176edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
+infobox
Update infobox and expand on theory
Line 4: Line 4:
| Fifth = 103\176 (702.27¢)
| Fifth = 103\176 (702.27¢)
| Major 2nd = 30\176 (205¢)
| Major 2nd = 30\176 (205¢)
| Minor 2nd = 13\176 (89¢)
| Semitones = 17:13 (116¢ : 89¢)
| Augmented 1sn = 17\176  (116¢)
| Consistency = 11
}}
}}
The '''176 equal divisions of the octave''' ('''176edo'''), or the '''176(-tone) equal temperament''' ('''176tet''', '''176et''') when viewed from a [[regular temperament]] perspective, is the [[EDO|equal division of the octave]] into 176 parts of about 6.82 [[cent]]s each, a size close to [[243/242]], the rastma.  
The '''176 equal divisions of the octave''' ('''176edo'''), or the '''176(-tone) equal temperament''' ('''176tet''', '''176et''') when viewed from a [[regular temperament]] perspective, is the [[EDO|equal division of the octave]] into 176 parts of about 6.82 [[cent]]s each, a size close to [[243/242]], the rastma.  


== Theory ==
== Theory ==
176edo is [[consistent]] to the [[11-odd-limit]], tempering out 78732/78125 ([[sensipent comma]]) and {{monzo| 41 -20 -4 }} ([[undim comma]]) in the 5-limit; [[6144/6125]], [[10976/10935]], and 50421/50000 in the 7-limit; [[441/440]], 3388/3375, 6912/6875, and [[8019/8000]] in the 11-limit, supporting the [[bison]] temperament and the [[commatic]] temperament.
176edo is [[consistent]] to the [[11-odd-limit]], tempering out 78732/78125 ([[sensipent comma]]) and {{monzo| 41 -20 -4 }} ([[undim comma]]) in the 5-limit; [[6144/6125]], [[10976/10935]], and 50421/50000 in the 7-limit; [[441/440]], 3388/3375, 6912/6875, [[8019/8000]] and [[9801/9800]] in the 11-limit, supporting the [[bison]] temperament and the [[commatic]] temperament. Using the [[patent val]], [[351/350]], [[364/363]], [[2080/2079]], [[2197/2187]], and [[4096/4095]] in the 13-limit.  


=== Prime harmonics ===
=== Prime harmonics ===
Line 105: Line 105:
| 20.45
| 20.45
| 81/80
| 81/80
| [[Commatic]] (176f)
| [[Commatic]]
|-
|-
| 2
| 2
Line 117: Line 117:
| 565.91<br>(34.09)
| 565.91<br>(34.09)
| 168/121<br>(55/54)
| 168/121<br>(55/54)
| [[Octowerck]] (176f)
| [[Octowerck]] (176f) / octowerckis (176)
|-
|-
| 11
| 11
Line 133: Line 133:


[[Category:Equal divisions of the octave]]
[[Category:Equal divisions of the octave]]
[[Category:Countermiracle]]

Revision as of 12:46, 24 October 2021

← 175edo 176edo 177edo →
Prime factorization 24 × 11
Step size 6.81818 ¢ 
Fifth 103\176 (702.273 ¢)
Semitones (A1:m2) 17:13 (115.9 ¢ : 88.64 ¢)
Consistency limit 11
Distinct consistency limit 11

The 176 equal divisions of the octave (176edo), or the 176(-tone) equal temperament (176tet, 176et) when viewed from a regular temperament perspective, is the equal division of the octave into 176 parts of about 6.82 cents each, a size close to 243/242, the rastma.

Theory

176edo is consistent to the 11-odd-limit, tempering out 78732/78125 (sensipent comma) and [41 -20 -4 (undim comma) in the 5-limit; 6144/6125, 10976/10935, and 50421/50000 in the 7-limit; 441/440, 3388/3375, 6912/6875, 8019/8000 and 9801/9800 in the 11-limit, supporting the bison temperament and the commatic temperament. Using the patent val, 351/350, 364/363, 2080/2079, 2197/2187, and 4096/4095 in the 13-limit.

Prime harmonics

Script error: No such module "primes_in_edo".

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [279 -176 [176 279]] -0.100 0.100 1.47
2.3.5 78732/78125, [41 -20 -4 [176 279 409]] -0.400 0.432 6.34
2.3.5.7 6144/6125, 10976/10935, 50421/50000 [176 279 409 494]] -0.243 0.463 6.79
2.3.5.7.11 441/440, 3388/3375, 6144/6125, 8019/8000 [176 279 409 494 609]] -0.250 0.414 6.08
2.3.5.7.11.13 351/350, 364/363, 441/440, 2197/2187, 3146/3125 [176 279 409 494 609 651]] -0.123 0.473 6.93

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per octave
Generator
(reduced)
Cents
(reduced)
Associated
ratio
Temperaments
1 17\176 115.91 77/72 Mercy / countermiracle / countermiraculous (176f) / counterbenediction (176)
1 35\176 238.64 147/128 Tokko
1 65\176 443.18 162/125 Sensipent
1 73\176 497.73 4/3 Gary / cotoneum
1 83\176 565.91 13/9 Tricot / trident
2 23\176 20.45 81/80 Commatic
2 23\176 156.82 35/32 Bison
8 83\176
(5\176)
565.91
(34.09)
168/121
(55/54)
Octowerck (176f) / octowerckis (176)
11 73\176
(7\176)
497.73
(47.73)
4/3
(36/35)
Hendecatonic
22 73\176
(1\176)
497.73
(6.82)
4/3
(385/384)
Icosidillic