7L 2s: Difference between revisions
Undo revision 78205 by Moremajorthanmajor (talk) unnecessary Tag: Undo |
No edit summary |
||
Line 6: | Line 6: | ||
| Equalized = 5 | | Equalized = 5 | ||
| Paucitonic = 4 | | Paucitonic = 4 | ||
| Pattern = | | Pattern = LLLLsLLLs | ||
| Neutral = 5L 4s | | Neutral = 5L 4s | ||
}} | }} | ||
This page is about of a [[MOSScales|MOSScale]] with 7 large steps and 2 small steps arranged | This page is about of a [[MOSScales|MOSScale]] with 7 large steps and 2 small steps ('''7L 2s''') arranged LLLLsLLLs (or any rotation of that, such as LLsLLLsLL). | ||
== Name == | == Name == | ||
The name '''superdiatonic''' has been established by [[Armodue]] theorists, and so [[TAMNAMS]] adopts it as well. | The name '''superdiatonic''' has been established by [[Armodue]] theorists, and so [[TAMNAMS]] adopts it as well. | ||
== Temperaments == | == Temperaments == | ||
If you're looking for highly accurate scales (that is, ones that approximate JI closely), there are much better scale patterns to look at. However, if your harmonic entropy is coarse enough (that is, if 678 cents is an acceptable '3/2' to you), then [[Pelogic family#Mavila|mavila]] is an important harmonic entropy minimum here. So a general name for this MOS pattern could be "Mavila Superdiatonic" or simply 'Superdiatonic'. | If you're looking for highly accurate scales (that is, ones that approximate JI closely), there are much better scale patterns to look at. However, if your harmonic entropy is coarse enough (that is, if 678 cents is an acceptable '3/2' to you), then [[Pelogic family#Mavila|mavila]] is an important harmonic entropy minimum here. So a general name for this MOS pattern could be "Mavila Superdiatonic" or simply 'Superdiatonic'. | ||
These scales are strongly associated with the [[Armodue]] project/system applied to septimal mavila and Hornbostel temperaments. | These scales are strongly associated with the [[Armodue]] project/system applied to septimal mavila and Hornbostel temperaments. | ||
== Intervals == | == Intervals == | ||
Note: In TAMNAMS, a k-step interval class in superdiatonic may be called a "k-step", "k-mosstep", or "k-armstep". 1-indexed terms such as "mos(k+1)th" are discouraged for non-diatonic mosses. | Note: In TAMNAMS, a k-step interval class in superdiatonic may be called a "k-step", "k-mosstep", or "k-armstep". 1-indexed terms such as "mos(k+1)th" are discouraged for non-diatonic mosses. | ||
== Modes == | |||
* 8|0 LLLLsLLLs | |||
* 7|1 LLLsLLLLs | |||
* 6|2 LLLsLLLsL | |||
* 5|3 LLsLLLLsL | |||
* 4|4 LLsLLLsLL | |||
* 3|5 LsLLLLsLL | |||
* 2|6 LsLLLsLLL | |||
* 1|7 sLLLLsLLL | |||
* 0|8 sLLLsLLLL | |||
== Scale tree == | == Scale tree == | ||
Optional types of 'JI [[ | Optional types of 'JI [[Blown Fifth]]' Generators: 31/21, 34/23, 65/44, 71/48, 99/67, 105/71, 108/73, 133/90, 145/98, 176/119 & 250/169. | ||
Generator ranges: | |||
* Chroma-positive generator: 666.6667 cents (5\9) to 685.7143 cents (4\7) | |||
* Chroma-negative generator: 514.2857 cents (3\7) to 533.3333 cents (4\9) | |||
{| class="wikitable" | {| class="wikitable" | ||
Line 794: | Line 814: | ||
| | | | | | ||
|} | |} | ||
[[Category:Abstract MOS patterns]] | [[Category:Abstract MOS patterns]] | ||
[[Category:9-tone scales]] | |||
[[Category:Mavila]] | [[Category:Mavila]] | ||
[[Category:Superdiatonic]] | [[Category:Superdiatonic]] |
Revision as of 13:51, 13 February 2022
↖ 6L 1s | ↑ 7L 1s | 8L 1s ↗ |
← 6L 2s | 7L 2s | 8L 2s → |
↙ 6L 3s | ↓ 7L 3s | 8L 3s ↘ |
┌╥╥╥╥┬╥╥╥┬┐ │║║║║│║║║││ │││││││││││ └┴┴┴┴┴┴┴┴┴┘
sLLLsLLLL
This page is about of a MOSScale with 7 large steps and 2 small steps (7L 2s) arranged LLLLsLLLs (or any rotation of that, such as LLsLLLsLL).
Name
The name superdiatonic has been established by Armodue theorists, and so TAMNAMS adopts it as well.
Temperaments
If you're looking for highly accurate scales (that is, ones that approximate JI closely), there are much better scale patterns to look at. However, if your harmonic entropy is coarse enough (that is, if 678 cents is an acceptable '3/2' to you), then mavila is an important harmonic entropy minimum here. So a general name for this MOS pattern could be "Mavila Superdiatonic" or simply 'Superdiatonic'.
These scales are strongly associated with the Armodue project/system applied to septimal mavila and Hornbostel temperaments.
Intervals
Note: In TAMNAMS, a k-step interval class in superdiatonic may be called a "k-step", "k-mosstep", or "k-armstep". 1-indexed terms such as "mos(k+1)th" are discouraged for non-diatonic mosses.
Modes
- 8|0 LLLLsLLLs
- 7|1 LLLsLLLLs
- 6|2 LLLsLLLsL
- 5|3 LLsLLLLsL
- 4|4 LLsLLLsLL
- 3|5 LsLLLLsLL
- 2|6 LsLLLsLLL
- 1|7 sLLLLsLLL
- 0|8 sLLLsLLLL
Scale tree
Optional types of 'JI Blown Fifth' Generators: 31/21, 34/23, 65/44, 71/48, 99/67, 105/71, 108/73, 133/90, 145/98, 176/119 & 250/169.
Generator ranges:
- Chroma-positive generator: 666.6667 cents (5\9) to 685.7143 cents (4\7)
- Chroma-negative generator: 514.2857 cents (3\7) to 533.3333 cents (4\9)
Generator | Generator size (cents) | Pentachord steps | Comments | ||
---|---|---|---|---|---|
4\7 | 685.714 | 1 1 1 0 | |||
53\93 | 683.871 | 13 13 13 1 | |||
102\179 | 683.798 | 25 25 25 2 | Approximately 0.03 cents away from 95/64 | ||
49\86 | 683.721 | 12 12 12 1 | |||
94\165 | 683.636 | 23 23 23 2 | |||
45\79 | 683.544 | 11 11 11 1 | |||
86\151 | 683.444 | 21 21 21 2 | |||
41\72 | 683.333 | 10 10 10 1 | |||
78\137 | 683.212 | 19 19 19 2 | |||
37\65 | 683.077 | 9 9 9 1 | |||
70\123 | 682.927 | 17 17 17 2 | |||
33\58 | 682.758 | 8 8 8 1 | 2 generators equal 11/10, 6 equal 4/3, creating a hybrid Mavila/Porcupine scale with three perfect 5ths as well as the flat ones. | ||
62\109 | 682.569 | 15 15 15 2 | |||
29\51 | 682.353 | 7 7 7 1 | |||
54\95 | 682.105 | 13 13 13 2 | |||
25\44 | 681.818 | 6 6 6 1 | |||
46\81 | 681.4815 | 11 11 11 2 | |||
21\37 | 681.081 | 5 5 5 1 | |||
59\104 | 680.769 | 14 14 14 3 | |||
38\67 | 680.597 | 9 9 9 2 | |||
55\97 | 680.412 | 13 13 13 3 | |||
17\30 | 680 | 4 4 4 1 | L/s = 4 | ||
47\83 | 679.518 | 11 11 11 3 | |||
30\53 | 679.245 | 7 7 7 2 | |||
43\76 | 678.947 | 10 10 10 3 | |||
56\99 | 678.788 | 13 13 13 4 | |||
69\122 | 678.6885 | 16 16 16 5 | |||
82\145 | 678.621 | 19 19 19 6 | |||
95\168 | 678.571 | 22 22 22 7 | |||
678.569 | π π π 1 | L/s = π | |||
108\191 | 678.534 | 25 25 25 8 | |||
121\214 | 678.505 | 28 28 28 9 | 28;9 Superdiatonic 1/28-tone (a slight exceeded representation of the ratio 262144/177147, the Pythagorean wolf Fifth) | ||
134\237 | 678.481 | 31 31 31 10 | HORNBOSTEL TEMPERAMENT (1/31-tone; Optimum high size of Hornbostel '6th') | ||
13\23 | 678.261 | 3 3 3 1 | HORNBOSTEL TEMPERAMENT (Armodue 1/3-tone) | ||
126\223 | 678.027 | 29 29 29 10 | HORNBOSTEL TEMPERAMENT
(Armodue 1/29-tone) | ||
113\200 | 678 | 26 26 26 9 | HORNBOSTEL (& OGOLEVETS) TEMPERAMENT (Armodue 1/26-tone; Best equillibrium between 6/5, Phi (833.1 Cent) and Square root of Pi (990.9 Cent), the notes '3', '7' & '8') | ||
100\177 | 677.966 | 23 23 23 8 | |||
87\154 | 677.922 | 20 20 20 7 | |||
74\131 | 677.863 | 17 17 17 6 | Armodue-Hornbostel 1/17-tone (the Golden Tone System of Thorvald Kornerup and a temperament of the Alexei Ogolevets's list of temperaments) | ||
61\108 | 677.778 | 14 14 14 5 | Armodue-Hornbostel 1/14-tone | ||
109\193 | 677.720 | 25 25 25 9 | Armodue-Hornbostel 1/25-tone | ||
48\85 | 677.647 | 11 11 11 4 | Armodue-Hornbostel 1/11-tone (Optimum accuracy of Phi interval, the note '7') | ||
677.562 | e e e 1 | L/s = e | |||
35\62 | 677.419 | 8 8 8 3 | Armodue-Hornbostel 1/8-tone | ||
92\163 | 677.301 | 21 21 21 8 | 21;8 Superdiatonic 1/21-tone | ||
677.28 | φ+1 φ+1 φ+1 1 | Split φ superdiatonic relation (34;13 - 55;21 - 89;34 - 144;55 - 233;89 - 377;144 - 610;233..) | |||
57\101 | 677.228 | 13 13 13 5 | 13;5 Superdiatonic 1/13-tone | ||
22\39 | 676.923 | 5 5 5 2 | Armodue-Hornbostel 1/5-tone (Optimum low size of Hornbostel '6th') | ||
75\133 | 676.692 | 17 17 17 7 | 17;7 Superdiatonic 1/17-tone (Note the very accuracy of the step 75 with the ratio 34/23 with an error of +0.011 Cents) | ||
53\94 | 676.596 | 12 12 12 5 | |||
31\55 | 676.364 | 7 7 7 3 | 7;3 Superdiatonic 1/7-tone | ||
40\71 | 676.056 | 9 9 9 4 | 9;4 Superdiatonic 1/9-tone | ||
49\87 | 675.862 | 11 11 11 5 | 11;5 Superdiatonic 1/11-tone | ||
58\103 | 675.728 | 13 13 13 6 | 13;6 Superdiatonic 1/13-tone | ||
9\16 | 675 | 2 2 2 1 | [BOUNDARY OF PROPRIETY: smaller generators are strictly proper]ARMODUE ESADECAFONIA (or Goldsmith Temperament) | ||
59\105 | 674.286 | 13 13 13 7 | Armodue-Mavila 1/13-tone | ||
50\89 | 674.157 | 11 11 11 6 | Armodue-Mavila 1/11-tone | ||
41\73 | 673.973 | 9 9 9 5 | Armodue-Mavila 1/9-tone (with an approximation of the Perfect Fifth + 1/5 Pyth.Comma [706.65 Cents]: 43\73 is 706.85 Cents) | ||
32\57 | 673.684 | 7 7 7 4 | Armodue-Mavila 1/7-tone (the 'Commatic' version of Armodue, because its high accuracy of the 7/4 interval, the note '8') | ||
673.577 | √3 √3 √3 1 | ||||
55\98 | 673.469 | 12 12 12 7 | |||
78\139 | 673.381 | 17 17 17 10 | Armodue-Mavila 1/17-tone | ||
101\180 | 673.333 | 22 22 22 13 | |||
23\41 | 673.171 | 5 5 5 3 | 5;3 Golden Armodue-Mavila 1/5-tone | ||
60\107 | 672.897 | 13 13 13 8 | 13;8 Golden Mavila 1/13-tone | ||
672.85 | φ φ φ 1 | GOLDEN MAVILA (L/s = φ) | |||
97\173 | 672.832 | 21 21 21 13 | 21;13 Golden Mavila 1/21-tone (Phi is the step 120\173) | ||
37\66 | 672.727 | 8 8 8 5 | 8;5 Golden Mavila 1/8-tone | ||
51\91 | 672.527 | 11 11 11 7 | 11;7 Superdiatonic 1/11-tone | ||
672.523 | π π π 2 | ||||
116\207 | 672.464 | 25 25 25 16 | 25;16 Superdiatonic 1/25-tone | ||
65\116 | 672.414 | 14 14 14 9 | 14;9 Superdiatonic 1/14-tone | ||
79\141 | 672.340 | 17 17 17 11 | 17;11 Superdiatonic 1/17-tone | ||
93\166 | 672.289 | 20 20 20 13 | |||
107\191 | 672.251 | 23 23 23 15 | |||
121\216 | 672.222 | 26 26 26 17 | 26;17 Superdiatonic 1/26-tone | ||
135\241 | 672.199 | 29 29 29 19 | 29;19 Superdiatonic 1/29-tone | ||
14\25 | 672 | 3 3 3 2 | 3;2 Golden Armodue-Mavila 1/3-tone | ||
145\259 | 671.815 | 31 31 31 21 | 31;21 Superdiatonic 1/31-tone | ||
131\234 | 671.795 | 28 28 28 19 | 28;19 Superdiatonic 1/28-tone | ||
117\209 | 671.770 | 25 25 25 17 | |||
103\184 | 671.739 | 22 22 22 15 | |||
89\159 | 671.698 | 19 19 19 13 | |||
75\134 | 671.642 | 16 16 16 11 | |||
61\109 | 671.560 | 13 13 13 9 | |||
47\84 | 671.429 | 10 10 10 7 | |||
80\143 | 671.329 | 17 17 17 12 | |||
33\59 | 671.186 | 7 7 7 5 | |||
52\93 | 670.968 | 11 11 11 8 | |||
19\34 | 670.588 | 4 4 4 3 | |||
43\77 | 670.13 | 9 9 9 7 | |||
24\43 | 669.767 | 5 5 5 4 | |||
53\95 | 669.474 | 11 11 11 9 | |||
29\52 | 669.231 | 6 6 6 5 | |||
63\113 | 669.0265 | 13 13 13 11 | |||
34\61 | 668.8525 | 7 7 7 6 | |||
73\131 | 668.702 | 15 15 15 13 | |||
39\70 | 668.571 | 8 8 8 7 | |||
83\149 | 668.456 | 17 17 17 15 | |||
44\79 | 668.354 | 9 9 9 8 | |||
93\167 | 668.2365 | 19 19 19 17 | |||
49\88 | 668.182 | 10 10 10 9 | |||
103\185 | 668.108 | 21 21 21 9 | |||
54\97 | 668.041 | 11 11 11 10 | |||
113\203 | 667.98 | 23 23 23 21 | |||
59\106 | 667.925 | 12 12 12 11 | |||
123\221 | 667.873 | 25 25 25 23 | |||
64\115 | 667.826 | 13 13 13 12 | |||
5\9 | 666.667 | 1 1 1 1 |