72edo: Difference between revisions
General cleanup |
|||
Line 6: | Line 6: | ||
| ja = | | ja = | ||
}} | }} | ||
= Theory = | == Theory == | ||
'''72-tone equal temperament''', or '''72-edo''', divides the octave into 72 steps or ''moria''. This produces a twelfth-tone tuning, with the whole tone measuring 200 cents, the same as in 12-tone equal temperament. 72-tone is also a superset of [[24edo|24-tone equal temperament]], a common and standard tuning of [[Arabic,_Turkish,_Persian|Arabic]] music, and has itself been used to tune Turkish music. | |||
Composers that used 72-tone include Alois Hába, Ivan Wyschnegradsky, Julián Carillo (who is better associated with [[96edo | Composers that used 72-tone include Alois Hába, Ivan Wyschnegradsky, Julián Carillo (who is better associated with [[96edo]]), Iannis Xenakis, Ezra Sims, James Tenney and the jazz musician Joe Maneri. | ||
72-tone equal temperament approximates [[11-limit | 72-tone equal temperament approximates [[11-limit]] [[just intonation]] exceptionally well, is consistent in the [[17-limit]], and is the ninth [[The_Riemann_Zeta_Function_and_Tuning #Zeta EDO lists|Zeta integral tuning]]. The octave, fifth and fourth are the same size as they would be in 12-tone, 72, 42 and 30 steps respectively, but the major third ([[5/4]]) measures 23 steps, not 24, and other [[5-limit]] major intervals are one step flat of 12-et while minor ones are one step sharp. The septimal minor seventh ([[7/4]]) is 58 steps, while the undecimal semiaugmented fourth ([[11/8]]) is 33. | ||
72 is an excellent tuning for [[Gamelismic_clan|miracle temperament]], especially the 11-limit version, and the related rank three temperament [[Marvel_family#Prodigy|prodigy]], and is a good tuning for other temperaments and scales, including wizard, harry, catakleismic, compton, unidec and tritikleismic. | 72 is an excellent tuning for [[Gamelismic_clan #Miracle|miracle temperament]], especially the 11-limit version, and the related rank three temperament [[Marvel_family #Prodigy|prodigy]], and is a good tuning for other temperaments and scales, including [[wizard]], [[harry]], [[catakleismic]], [[compton]], [[unidec]] and [[tritikleismic]]. | ||
=Intervals= | == Intervals == | ||
{| class="wikitable center-all right-2 left-3" | |||
{| class="wikitable" | |||
|- | |- | ||
! Degrees | |||
! Cents | |||
! Approximate Ratios (17-limit) | |||
! colspan="3" | [[Ups and Downs Notation]] | |||
|- | |- | ||
| 0 | | 0 | ||
|0.000 | | 0.000 | ||
| 1/1 | |||
| P1 | |||
| perfect unison | |||
| D | |||
|- | |- | ||
| 1 | |||
| 16.667 | |||
| 81/80 | |||
| ^1 | |||
| up unison | |||
| ^D | |||
|- | |- | ||
| 2 | |||
| 33.333 | |||
| 45/44 | |||
| ^^ | |||
| double-up unison | |||
| ^^D | |||
|- | |- | ||
| 3 | |||
| 50.000 | |||
| 33/32 | |||
| ^<sup>3</sup>1, <br>v<sup>3</sup>m2 | |||
| triple-up unison,<br>triple-down minor 2nd | |||
| ^<sup>3</sup>D, <br>v<sup>3</sup>Eb | |||
triple-down minor 2nd | |||
|- | |- | ||
| 4 | |||
| 66.667 | |||
| 25/24 | |||
| vvm2 | |||
| double-downminor 2nd | |||
| vvEb | |||
|- | |- | ||
| 5 | |||
| 83.333 | |||
| 21/20 | |||
| vm2 | |||
| downminor 2nd | |||
| vEb | |||
|- | |- | ||
| 6 | |||
| 100.000 | |||
| 35/33, 17/16, 18/17 | |||
| m2 | |||
| minor 2nd | |||
| Eb | |||
|- | |- | ||
| 7 | |||
| 116.667 | |||
| 15/14, 16/15 | |||
| ^m2 | |||
| upminor 2nd | |||
| ^Eb | |||
|- | |- | ||
| 8 | |||
| 133.333 | |||
| 27/25, 13/12, 14/13 | |||
| v~2 | |||
| downmid 2nd | |||
| ^^Eb | |||
|- | |- | ||
| 9 | |||
| 150.000 | |||
| 12/11 | |||
| ~2 | |||
| mid 2nd | |||
| v<sup>3</sup>E | |||
|- | |- | ||
| 10 | |||
| 166.667 | |||
| 11/10 | |||
| ^~2 | |||
| upmid 2nd | |||
| vvE | |||
|- | |- | ||
| 11 | |||
| 183.333 | |||
| 10/9 | |||
| vM2 | |||
| downmajor 2nd | |||
| vE | |||
|- | |- | ||
| 12 | |||
| 200.000 | |||
| 9/8 | |||
| M2 | |||
| major 2nd | |||
| E | |||
|- | |- | ||
| 13 | |||
| 216.667 | |||
| 25/22, 17/15 | |||
| ^M2 | |||
| upmajor 2nd | |||
| ^E | |||
|- | |- | ||
| 14 | |||
| 233.333 | |||
| 8/7 | |||
| ^^M2 | |||
| double-upmajor 2nd | |||
| ^^E | |||
|- | |- | ||
| 15 | |||
| 250.000 | |||
| 81/70, 15/13 | |||
| ^<sup>3</sup>M2, <br>v<sup>3</sup>m3 | |||
| triple-up major 2nd,<br>triple-down minor 3rd | |||
| ^<sup>3</sup>E, <br>v<sup>3</sup>F | |||
triple-down minor 3rd | |||
|- | |- | ||
| 16 | |||
| 266.667 | |||
| 7/6 | |||
| vvm3 | |||
| double-downminor 3rd | |||
| vvF | |||
|- | |- | ||
| 17 | |||
| 283.333 | |||
| 33/28, 13/11, 20/17 | |||
| vm3 | |||
| downminor 3rd | |||
| vF | |||
|- | |- | ||
| 18 | |||
| 300.000 | |||
| 25/21 | |||
| m3 | |||
| minor 3rd | |||
| F | |||
|- | |- | ||
| 19 | |||
| 316.667 | |||
| 6/5 | |||
| ^m3 | |||
| upminor 3rd | |||
| ^F | |||
|- | |- | ||
| 20 | |||
| 333.333 | |||
| 40/33, 17/14 | |||
| v~3 | |||
| downmid 3rd | |||
| ^^F | |||
|- | |- | ||
| 21 | |||
| 350.000 | |||
| 11/9 | |||
| ~3 | |||
| mid 3rd | |||
| ^<sup>3</sup>F | |||
|- | |- | ||
| 22 | |||
| 366.667 | |||
| 99/80, 16/13, 21/17 | |||
| ^~3 | |||
| upmid 3rd | |||
| vvF# | |||
|- | |- | ||
| 23 | |||
| 383.333 | |||
| 5/4 | |||
| vM3 | |||
| downmajor 3rd | |||
| vF# | |||
|- | |- | ||
| 24 | |||
| 400.000 | |||
| 44/35 | |||
| M3 | |||
| major 3rd | |||
| F# | |||
|- | |- | ||
| 25 | |||
| 416.667 | |||
| 14/11 | |||
| ^M3 | |||
| upmajor 3rd | |||
| ^F# | |||
|- | |- | ||
| 26 | |||
| 433.333 | |||
| 9/7 | |||
| ^^M3 | |||
| double-upmajor 3rd | |||
| ^^F# | |||
|- | |- | ||
| 27 | |||
| 450.000 | |||
| 35/27, 13/10 | |||
| ^<sup>3</sup>M3, <br>v<sup>3</sup>4 | |||
| triple-up major 3rd,<br>triple-down 4th | |||
| ^<sup>3</sup>F#, <br>v<sup>3</sup>G | |||
triple-down 4th | |||
|- | |- | ||
| 28 | |||
| 466.667 | |||
| 21/16, 17/13 | |||
| vv4 | |||
| double-down 4th | |||
| vvG | |||
|- | |- | ||
| 29 | |||
| 483.333 | |||
| 33/25 | |||
| v4 | |||
| down 4th | |||
| vG | |||
|- | |- | ||
| 30 | |||
| 500.000 | |||
| 4/3 | |||
| P4 | |||
| perfect 4th | |||
| G | |||
|- | |- | ||
| 31 | |||
| 516.667 | |||
| 27/20 | |||
| ^4 | |||
| up 4th | |||
| ^G | |||
|- | |- | ||
| 32 | |||
| 533.333 | |||
| 15/11 | |||
| v~4 | |||
| downmid 4th | |||
| ^^G | |||
|- | |- | ||
| 33 | |||
| 550.000 | |||
| 11/8 | |||
| ~4 | |||
| mid 4th | |||
| ^<sup>3</sup>G | |||
|- | |- | ||
| 34 | |||
| 566.667 | |||
| 25/18, 18/13 | |||
| ^~4 | |||
| upmid 4th | |||
| vvG# | |||
|- | |- | ||
| 35 | |||
| 583.333 | |||
| 7/5 | |||
| vA4, vd5 | |||
| downaug 4th, updim 5th | |||
| vG#, vAb | |||
|- | |- | ||
| 36 | |||
| 600.000 | |||
| 99/70, 17/12 | |||
| A4, d5 | |||
| aug 4th, dim 5th | |||
| G#, Ab | |||
|- | |- | ||
| 37 | |||
| 616.667 | |||
| 10/7 | |||
| ^A4, ^d5 | |||
| upaug 4th, downdim 5th | |||
| ^G#, ^Ab | |||
|- | |- | ||
| 38 | |||
| 633.333 | |||
| 36/25, 13/9 | |||
| v~5 | |||
| downmid 5th | |||
| ^^Ab | |||
|- | |- | ||
| 39 | |||
| 650.000 | |||
| 16/11 | |||
| ~5 | |||
| mid 5th | |||
| v<sup>3</sup>A | |||
|- | |- | ||
| 40 | |||
| 666.667 | |||
| 22/15 | |||
| ^~5 | |||
| upmid 5th | |||
| vvA | |||
|- | |- | ||
| 41 | |||
| 683.333 | |||
| 40/27 | |||
| v5 | |||
| down 5th | |||
| vA | |||
|- | |- | ||
| 42 | |||
| 700.000 | |||
| 3/2 | |||
| P5 | |||
| perfect 5th | |||
| A | |||
|- | |- | ||
| 43 | |||
| 716.667 | |||
| 50/33 | |||
| ^5 | |||
| up 5th | |||
| ^A | |||
|- | |- | ||
| 44 | |||
| 733.333 | |||
| 32/21 | |||
| ^^5 | |||
| double-up 5th | |||
| ^^A | |||
|- | |- | ||
| 45 | |||
| 750.000 | |||
| 54/35, 17/11 | |||
| ^<sup>3</sup>5, <br>v<sup>3</sup>m6 | |||
| triple-up 5th,<br>triple-down minor 6th | |||
| ^<sup>3</sup>A, <br>v<sup>3</sup>Bb | |||
triple-down minor 6th | |||
|- | |- | ||
| 46 | |||
| 766.667 | |||
| 14/9 | |||
| vvm6 | |||
| double-downminor 6th | |||
| vvBb | |||
|- | |- | ||
| 47 | |||
| 783.333 | |||
| 11/7 | |||
| vm6 | |||
| downminor 6th | |||
| vBb | |||
|- | |- | ||
| 48 | |||
| 800.000 | |||
| 35/22 | |||
| m6 | |||
| minor 6th | |||
| Bb | |||
|- | |- | ||
| 49 | |||
| 816.667 | |||
| 8/5 | |||
| ^m6 | |||
| upminor 6th | |||
| ^Bb | |||
|- | |- | ||
| 50 | |||
| 833.333 | |||
| 81/50, 13/8 | |||
| v~6 | |||
| downmid 6th | |||
| ^^Bb | |||
|- | |- | ||
| 51 | |||
| 850.000 | |||
| 18/11 | |||
| ~6 | |||
| mid 6th | |||
| v<sup>3</sup>B | |||
|- | |- | ||
| 52 | |||
| 866.667 | |||
| 33/20, 28/17 | |||
| ^~6 | |||
| upmid 6th | |||
| vvB | |||
|- | |- | ||
| 53 | |||
| 883.333 | |||
| 5/3 | |||
| vM6 | |||
| downmajor 6th | |||
| vB | |||
|- | |- | ||
| 54 | |||
| 900.000 | |||
| 27/16 | |||
| M6 | |||
| major 6th | |||
| B | |||
|- | |- | ||
| 55 | |||
| 916.667 | |||
| 56/33, 17/10 | |||
| ^M6 | |||
| upmajor 6th | |||
| ^B | |||
|- | |- | ||
| 56 | |||
| 933.333 | |||
| 12/7 | |||
| ^^M6 | |||
| double-upmajor 6th | |||
| ^^B | |||
|- | |- | ||
| 57 | |||
| 950.000 | |||
| 121/70 | |||
| ^<sup>3</sup>M6, <br>v<sup>3</sup>m7 | |||
| triple-up major 6th,<br>triple-down minor 7th | |||
| ^<sup>3</sup>B, <br>v<sup>3</sup>C | |||
triple-down minor 7th | |||
|- | |- | ||
| 58 | |||
| 966.667 | |||
| 7/4 | |||
| vvm7 | |||
| double-downminor 7th | |||
| vvC | |||
|- | |- | ||
| 59 | |||
| 983.333 | |||
| 44/25 | |||
| vm7 | |||
| downminor 7th | |||
| vC | |||
|- | |- | ||
| 60 | |||
| 1000.000 | |||
| 16/9 | |||
| m7 | |||
| minor 7th | |||
| C | |||
|- | |- | ||
| 61 | |||
| 1016.667 | |||
| 9/5 | |||
| ^m7 | |||
| upminor 7th | |||
| ^C | |||
|- | |- | ||
| 62 | |||
| 1033.333 | |||
| 20/11 | |||
| v~7 | |||
| downmid 7th | |||
| ^^C | |||
|- | |- | ||
| 63 | |||
| 1050.000 | |||
| 11/6 | |||
| ~7 | |||
| mid 7th | |||
| ^<sup>3</sup>C | |||
|- | |- | ||
| 64 | |||
| 1066.667 | |||
| 50/27 | |||
| ^~7 | |||
| upmid 7th | |||
| vvC# | |||
|- | |- | ||
| 65 | |||
| 1083.333 | |||
| 15/8 | |||
| vM7 | |||
| downmajor 7th | |||
| vC# | |||
|- | |- | ||
| 66 | |||
| 1100.000 | |||
| 66/35, 17/9 | |||
| M7 | |||
| major 7th | |||
| C# | |||
|- | |- | ||
| 67 | |||
| 1116.667 | |||
| 21/11 | |||
| ^M7 | |||
| upmajor 7th | |||
| ^C# | |||
|- | |- | ||
| 68 | |||
| 1133.333 | |||
| 27/14 | |||
| ^^M7 | |||
| double-upmajor 7th | |||
| ^^C# | |||
|- | |- | ||
| 69 | |||
| 1150.000 | |||
| 35/18 | |||
| ^<sup>3</sup>M7, <br>v<sup>3</sup>8 | |||
| triple-up major 7th,<br>triple-down octave | |||
| ^<sup>3</sup>C#, <br>v<sup>3</sup>D | |||
triple-down octave | |||
|- | |- | ||
| 70 | |||
| 1166.667 | |||
| 49/25 | |||
| vv8 | |||
| double-down octave | |||
| vvD | |||
|- | |- | ||
| 71 | |||
| 1183.333 | |||
| 99/50 | |||
| v8 | |||
| down octave | |||
| vD | |||
|- | |- | ||
| 72 | |||
| 1200.000 | |||
| 2/1 | |||
| P8 | |||
| perfect octave | |||
| D | |||
|} | |} | ||
Combining ups and downs notation with [[Kite's_color_notation|color notation]], qualities can be loosely associated with colors: | Combining ups and downs notation with [[Kite's_color_notation|color notation]], qualities can be loosely associated with colors: | ||
{| class="wikitable" | {| class="wikitable center-all" | ||
|- | |- | ||
! | ! quality | ||
! | ! [[Kite's color notation|color]] | ||
! | ! monzo format | ||
! | ! examples | ||
|- | |- | ||
| double-down minor | |||
| zo | |||
| {a, b, 0, 1} | |||
| 7/6, 7/4 | |||
|- | |- | ||
| minor | |||
| fourthward wa | |||
| {a, b}, b < -1 | |||
| 32/27, 16/9 | |||
|- | |- | ||
| upminor | |||
| gu | |||
| {a, b, -1} | |||
| 6/5, 9/5 | |||
|- | |- | ||
| mid | |||
| ilo | |||
| {a, b, 0, 0, 1} | |||
| 11/9, 11/6 | |||
|- | |- | ||
| " | |||
| lu | |||
| {a, b, 0, 0, -1} | |||
| 12/11, 18/11 | |||
|- | |- | ||
| downmajor | |||
| yo | |||
| {a, b, 1} | |||
| 5/4, 5/3 | |||
|- | |- | ||
| major | |||
| fifthward wa | |||
| {a, b}, b > 1 | |||
| 9/8, 27/16 | |||
|- | |- | ||
| double-up major | |||
| ru | |||
| {a, b, 0, -1} | |||
| 9/7, 12/7 | |||
|} | |} | ||
All 72-edo chords can be named using ups and downs. An up, down or mid after the chord root affects the 3rd, 6th, 7th, and/or the 11th (every other note of a stacked-3rds chord 6-1-3-5-7-9-11-13). Alterations are always enclosed in parentheses, additions never are. Here are the zo, gu, ilo, yo and ru triads: | All 72-edo chords can be named using ups and downs. An up, down or mid after the chord root affects the 3rd, 6th, 7th, and/or the 11th (every other note of a stacked-3rds chord 6-1-3-5-7-9-11-13). Alterations are always enclosed in parentheses, additions never are. Here are the zo, gu, ilo, yo and ru triads: | ||
{| class="wikitable" | {| class="wikitable center-all" | ||
|- | |- | ||
! | ! [[Kite's color notation|color of the 3rd]] | ||
! | ! JI chord | ||
! | ! notes as edosteps | ||
! | ! notes of C chord | ||
! | ! written name | ||
! | ! spoken name | ||
|- | |- | ||
| zo | |||
| 6:7:9 | |||
| 0-16-42 | |||
| C vvEb G | |||
| Cvvm | |||
| C double-down minor | |||
|- | |- | ||
| gu | |||
| 10:12:15 | |||
| 0-19-42 | |||
| C ^Eb G | |||
| C^m | |||
| C upminor | |||
|- | |- | ||
| ilo | |||
| 18:22:27 | |||
| 0-21-42 | |||
| C v<span style="font-size: 90%; vertical-align: super;">3</span>E G | |||
| C~ | |||
| C mid | |||
|- | |- | ||
| yo | |||
| 4:5:6 | |||
| 0-23-42 | |||
| C vE G | |||
| Cv | |||
| C downmajor or C down | |||
|- | |- | ||
| ru | |||
| 14:18:27 | |||
| 0-26-42 | |||
| C ^^E G | |||
| C^^ | |||
| C double-upmajor or C double-up | |||
|} | |} | ||
For a more complete list, see [[ | For a more complete list, see [[Ups and Downs Notation #Chord names in other EDOs]]. | ||
== | |||
{| class="wikitable | == Just approximation == | ||
{| class="wikitable center-all" | |||
! | ! | ||
!prime 2 | ! prime 2 | ||
!prime 3 | ! prime 3 | ||
!prime 5 | ! prime 5 | ||
!prime 7 | ! prime 7 | ||
!prime 11 | ! prime 11 | ||
!prime 13 | ! prime 13 | ||
!prime 17 | ! prime 17 | ||
!prime 19 | ! prime 19 | ||
!prime 23 | ! prime 23 | ||
!prime 29 | ! prime 29 | ||
!prime 31 | ! prime 31 | ||
|- | |- | ||
!error | ! error (¢) | ||
|0. | | 0.000 | ||
| -1. | | -1.955 | ||
| -2. | | -2.980 | ||
| -2. | | -2.159 | ||
| -1. | | -1.318 | ||
| -7. | | -7.194 | ||
| -4. | | -4.955 | ||
| +2. | | +2.487 | ||
| +5. | | +5.059 | ||
| +3. | | +3.755 | ||
| -4. | | -4.964 | ||
|} | |} | ||
=Commas= | == Commas == | ||
Commas tempered out by 72edo | Commas tempered out by 72edo include… | ||
{| class="wikitable" | {| class="wikitable" | ||
Line 765: | Line 754: | ||
|} | |} | ||
=Temperaments= | == Temperaments == | ||
* [[List of edo-distinct 72et rank two temperaments]] | |||
72edo provides the [[optimal patent val]] for [[miracle]] and [[wizard]] in the 7-limit, miracle, [[catakleismic]], [[bikleismic]], [[compton]], [[ennealimnic]], [[ennealiminal]], [[enneaportent]], [[marvolo]] and [[catalytic]] in the 11-limit, and catakleismic, bikleismic, compton, [[comptone]], [[enneaportent]], [[ennealim]], catalytic, marvolo, [[manna]], [[hendec]], [[lizard]], [[neominor]], [[hours]], and [[semimiracle]] in the 13-limit. | |||
= | {| class="wikitable center-1 center-2" | ||
[[ | |- | ||
! Periods<br>per octave | |||
! Generator | |||
! Names | |||
|- | |||
| 1 | |||
| 1\72 | |||
| [[Quincy]] | |||
|- | |||
| 1 | |||
| 5\72 | |||
| [[Marvolo]] | |||
|- | |||
| 1 | |||
| 7\72 | |||
| [[Miracle]]/benediction/manna | |||
|- | |||
| 1 | |||
| 11\72 | |||
| | |||
|- | |||
| 1 | |||
| 13\72 | |||
| | |||
|- | |||
| 1 | |||
| 17\72 | |||
| [[Neominor]] | |||
|- | |||
| 1 | |||
| 19\72 | |||
| [[Catakleismic]] | |||
|- | |||
| 1 | |||
| 23\72 | |||
| | |||
|- | |||
| 1 | |||
| 25\72 | |||
| [[Sqrtphi]] | |||
|- | |||
| 1 | |||
| 29\72 | |||
| | |||
|- | |||
| 1 | |||
| 31\72 | |||
| [[Marvo]]/zarvo | |||
|- | |||
| 1 | |||
| 35\72 | |||
| [[Cotritone]] | |||
|- | |||
| 2 | |||
| 1\72 | |||
| | |||
|- | |||
| 2 | |||
| 5\72 | |||
| [[Harry]] | |||
|- | |||
| 2 | |||
| 7\72 | |||
| | |||
|- | |||
| 2 | |||
| 11\72 | |||
| [[Unidec]]/hendec | |||
|- | |||
| 2 | |||
| 13\72 | |||
| [[Wizard]]/lizard/gizzard | |||
|- | |||
| 2 | |||
| 17\72 | |||
| | |||
|- | |||
| 3 | |||
| 1\72 | |||
| | |||
|- | |||
| 3 | |||
| 5\72 | |||
| [[Tritikleismic]] | |||
|- | |||
| 3 | |||
| 7\72 | |||
| | |||
|- | |||
| 3 | |||
| 11\72 | |||
| [[Mirkat]] | |||
|- | |||
| 4 | |||
| 1\72 | |||
| [[Quadritikleismic]] | |||
|- | |||
| 4 | |||
| 5\72 | |||
| | |||
|- | |||
| 4 | |||
| 7\72 | |||
| | |||
|- | |||
| 6 | |||
| 1\72 | |||
| | |||
|- | |||
| 6 | |||
| 5\72 | |||
| | |||
|- | |||
| 8 | |||
| 1\72 | |||
| [[Octoid]] | |||
|- | |||
| 8 | |||
| 2\72 | |||
| [[Octowerck]] | |||
|- | |||
| 8 | |||
| 4\72 | |||
| | |||
|- | |||
| 9 | |||
| 1\72 | |||
| | |||
|- | |||
| 9 | |||
| 3\72 | |||
| [[Ennealimmal]]/ennealimmic | |||
|- | |||
| 12 | |||
| 1\72 | |||
| [[Compton]] | |||
|- | |||
| 18 | |||
| 1\72 | |||
| [[Hemiennealimmal]] | |||
|- | |||
| 24 | |||
| 1\72 | |||
| [[Hours]] | |||
|- | |||
| 36 | |||
| 1\72 | |||
| | |||
|} | |||
[[ | == Scales == | ||
* [[smithgw72a]], [[smithgw72b]], [[smithgw72c]], [[smithgw72d]], [[smithgw72e]], [[smithgw72f]], [[smithgw72g]], [[smithgw72h]], [[smithgw72i]], [[smithgw72j]] | |||
* [[blackjack]], [[miracle_8]], [[miracle_10]], [[miracle_12]], [[miracle_12a]], [[miracle_24hi]], [[miracle_24lo]] | |||
* [[keenanmarvel]], [[xenakis_chrome]], [[xenakis_diat]], [[xenakis_schrome]] | |||
* [[genus24255et72|Euler(24255) genus in 72 equal]] | |||
* [[JuneGloom]] | |||
=== Harmonic Scale === | |||
Mode 8 of the harmonic series – [[overtone_scales|overtones 8 through 16]], octave repeating – is well-represented in 72edo. Note that all the different step sizes are distinguished, except for 13:12 and 14:13 (conflated to 8\72edo, 133.3 cents) and 15:14 and 16:15 (conflated to 7\72edo, 116.7 cents, the generator for miracle temperament). | |||
==Harmonic Scale== | |||
Mode 8 of the harmonic series | |||
{| class="wikitable" | {| class="wikitable" | ||
Line 806: | Line 942: | ||
| | 16 | | | 16 | ||
|- | |- | ||
| | | | | …as JI Ratio from 1/1: | ||
| | 1/1 | | | 1/1 | ||
| | | | | | ||
Line 825: | Line 961: | ||
| | 2/1 | | | 2/1 | ||
|- | |- | ||
| | | | | …in cents: | ||
| | 0 | | | 0 | ||
| | | | | | ||
Line 863: | Line 999: | ||
| | 72 | | | 72 | ||
|- | |- | ||
| | | | | …in cents: | ||
| | 0 | | | 0 | ||
| | | | | | ||
Line 901: | Line 1,037: | ||
| | | | | | ||
|- | |- | ||
| | | | | …in cents: | ||
| | | | | | ||
| | 203.9 | | | 203.9 | ||
Line 959: | Line 1,095: | ||
|} | |} | ||
= | == Z function == | ||
72edo is the ninth [[The_Riemann_Zeta_Function_and_Tuning #Zeta EDO lists|zeta integral edo]], as well as being a peak and gap edo, and the maximum value of the [[The_Riemann_Zeta_Function_and_Tuning #The Z function|Z function]] in the region near 72 occurs at 71.9506, giving an octave of 1200.824 cents, the stretched octaves of the zeta tuning. Below is a plot of Z in the region around 72. | |||
=Z function= | |||
72edo is the ninth [[The_Riemann_Zeta_Function_and_Tuning#Zeta EDO lists|zeta integral edo]], as well as being a peak and gap edo, and the maximum value of the [[The_Riemann_Zeta_Function_and_Tuning#The Z function|Z function]] in the region near 72 occurs at 71.9506, giving an octave of 1200.824 cents, the stretched octaves of the zeta tuning. Below is a plot of Z in the region around 72. | |||
[[File:plot72.png|alt=plot72.png|plot72.png]] | [[File:plot72.png|alt=plot72.png|plot72.png]] | ||
=Music= | == Music == | ||
[http://www.archive.org/details/Kotekant Kotekant] ''[http://www.archive.org/download/Kotekant/kotekant.mp3 play]'' by [[Gene_Ward_Smith|Gene Ward Smith]] | [http://www.archive.org/details/Kotekant Kotekant] ''[http://www.archive.org/download/Kotekant/kotekant.mp3 play]'' by [[Gene_Ward_Smith|Gene Ward Smith]] | ||
Line 1,126: | Line 1,109: | ||
''[http://micro.soonlabel.com/gene_ward_smith/Others/Rodgers/drum12a-c-t9.mp3 June Gloom #9]'' by Prent Rodgers | ''[http://micro.soonlabel.com/gene_ward_smith/Others/Rodgers/drum12a-c-t9.mp3 June Gloom #9]'' by Prent Rodgers | ||
=External links= | == External links == | ||
* [[Wikipedia:72_equal_temperament|72 equal temperament - Wikipedia]] | |||
* [http://orthodoxwiki.org/Byzantine_Chant OrthodoxWiki Article on Byzantine chant, which uses 72edo] | |||
* [http://en.wikipedia.org/wiki/Joe_Maneri Wikipedia article on Joe Maneri (1927-2009)] | |||
* [http://www.ekmelic-music.org/en/ Ekmelic Music Society/Gesellschaft für Ekmelische Musik], a group of composers and researchers dedicated to 72edo music | |||
* [http://72note.com/site/original.html Rick Tagawa's 72edo site], including theory and composers' list | |||
* [http://www.myspace.com/dawier Danny Wier, composer and musician who specializes in 72-edo] | |||
[[Category:Edo]] | [[Category:Edo]] |
Revision as of 08:04, 15 August 2020
Theory
72-tone equal temperament, or 72-edo, divides the octave into 72 steps or moria. This produces a twelfth-tone tuning, with the whole tone measuring 200 cents, the same as in 12-tone equal temperament. 72-tone is also a superset of 24-tone equal temperament, a common and standard tuning of Arabic music, and has itself been used to tune Turkish music.
Composers that used 72-tone include Alois Hába, Ivan Wyschnegradsky, Julián Carillo (who is better associated with 96edo), Iannis Xenakis, Ezra Sims, James Tenney and the jazz musician Joe Maneri.
72-tone equal temperament approximates 11-limit just intonation exceptionally well, is consistent in the 17-limit, and is the ninth Zeta integral tuning. The octave, fifth and fourth are the same size as they would be in 12-tone, 72, 42 and 30 steps respectively, but the major third (5/4) measures 23 steps, not 24, and other 5-limit major intervals are one step flat of 12-et while minor ones are one step sharp. The septimal minor seventh (7/4) is 58 steps, while the undecimal semiaugmented fourth (11/8) is 33.
72 is an excellent tuning for miracle temperament, especially the 11-limit version, and the related rank three temperament prodigy, and is a good tuning for other temperaments and scales, including wizard, harry, catakleismic, compton, unidec and tritikleismic.
Intervals
Degrees | Cents | Approximate Ratios (17-limit) | Ups and Downs Notation | ||
---|---|---|---|---|---|
0 | 0.000 | 1/1 | P1 | perfect unison | D |
1 | 16.667 | 81/80 | ^1 | up unison | ^D |
2 | 33.333 | 45/44 | ^^ | double-up unison | ^^D |
3 | 50.000 | 33/32 | ^31, v3m2 |
triple-up unison, triple-down minor 2nd |
^3D, v3Eb |
4 | 66.667 | 25/24 | vvm2 | double-downminor 2nd | vvEb |
5 | 83.333 | 21/20 | vm2 | downminor 2nd | vEb |
6 | 100.000 | 35/33, 17/16, 18/17 | m2 | minor 2nd | Eb |
7 | 116.667 | 15/14, 16/15 | ^m2 | upminor 2nd | ^Eb |
8 | 133.333 | 27/25, 13/12, 14/13 | v~2 | downmid 2nd | ^^Eb |
9 | 150.000 | 12/11 | ~2 | mid 2nd | v3E |
10 | 166.667 | 11/10 | ^~2 | upmid 2nd | vvE |
11 | 183.333 | 10/9 | vM2 | downmajor 2nd | vE |
12 | 200.000 | 9/8 | M2 | major 2nd | E |
13 | 216.667 | 25/22, 17/15 | ^M2 | upmajor 2nd | ^E |
14 | 233.333 | 8/7 | ^^M2 | double-upmajor 2nd | ^^E |
15 | 250.000 | 81/70, 15/13 | ^3M2, v3m3 |
triple-up major 2nd, triple-down minor 3rd |
^3E, v3F |
16 | 266.667 | 7/6 | vvm3 | double-downminor 3rd | vvF |
17 | 283.333 | 33/28, 13/11, 20/17 | vm3 | downminor 3rd | vF |
18 | 300.000 | 25/21 | m3 | minor 3rd | F |
19 | 316.667 | 6/5 | ^m3 | upminor 3rd | ^F |
20 | 333.333 | 40/33, 17/14 | v~3 | downmid 3rd | ^^F |
21 | 350.000 | 11/9 | ~3 | mid 3rd | ^3F |
22 | 366.667 | 99/80, 16/13, 21/17 | ^~3 | upmid 3rd | vvF# |
23 | 383.333 | 5/4 | vM3 | downmajor 3rd | vF# |
24 | 400.000 | 44/35 | M3 | major 3rd | F# |
25 | 416.667 | 14/11 | ^M3 | upmajor 3rd | ^F# |
26 | 433.333 | 9/7 | ^^M3 | double-upmajor 3rd | ^^F# |
27 | 450.000 | 35/27, 13/10 | ^3M3, v34 |
triple-up major 3rd, triple-down 4th |
^3F#, v3G |
28 | 466.667 | 21/16, 17/13 | vv4 | double-down 4th | vvG |
29 | 483.333 | 33/25 | v4 | down 4th | vG |
30 | 500.000 | 4/3 | P4 | perfect 4th | G |
31 | 516.667 | 27/20 | ^4 | up 4th | ^G |
32 | 533.333 | 15/11 | v~4 | downmid 4th | ^^G |
33 | 550.000 | 11/8 | ~4 | mid 4th | ^3G |
34 | 566.667 | 25/18, 18/13 | ^~4 | upmid 4th | vvG# |
35 | 583.333 | 7/5 | vA4, vd5 | downaug 4th, updim 5th | vG#, vAb |
36 | 600.000 | 99/70, 17/12 | A4, d5 | aug 4th, dim 5th | G#, Ab |
37 | 616.667 | 10/7 | ^A4, ^d5 | upaug 4th, downdim 5th | ^G#, ^Ab |
38 | 633.333 | 36/25, 13/9 | v~5 | downmid 5th | ^^Ab |
39 | 650.000 | 16/11 | ~5 | mid 5th | v3A |
40 | 666.667 | 22/15 | ^~5 | upmid 5th | vvA |
41 | 683.333 | 40/27 | v5 | down 5th | vA |
42 | 700.000 | 3/2 | P5 | perfect 5th | A |
43 | 716.667 | 50/33 | ^5 | up 5th | ^A |
44 | 733.333 | 32/21 | ^^5 | double-up 5th | ^^A |
45 | 750.000 | 54/35, 17/11 | ^35, v3m6 |
triple-up 5th, triple-down minor 6th |
^3A, v3Bb |
46 | 766.667 | 14/9 | vvm6 | double-downminor 6th | vvBb |
47 | 783.333 | 11/7 | vm6 | downminor 6th | vBb |
48 | 800.000 | 35/22 | m6 | minor 6th | Bb |
49 | 816.667 | 8/5 | ^m6 | upminor 6th | ^Bb |
50 | 833.333 | 81/50, 13/8 | v~6 | downmid 6th | ^^Bb |
51 | 850.000 | 18/11 | ~6 | mid 6th | v3B |
52 | 866.667 | 33/20, 28/17 | ^~6 | upmid 6th | vvB |
53 | 883.333 | 5/3 | vM6 | downmajor 6th | vB |
54 | 900.000 | 27/16 | M6 | major 6th | B |
55 | 916.667 | 56/33, 17/10 | ^M6 | upmajor 6th | ^B |
56 | 933.333 | 12/7 | ^^M6 | double-upmajor 6th | ^^B |
57 | 950.000 | 121/70 | ^3M6, v3m7 |
triple-up major 6th, triple-down minor 7th |
^3B, v3C |
58 | 966.667 | 7/4 | vvm7 | double-downminor 7th | vvC |
59 | 983.333 | 44/25 | vm7 | downminor 7th | vC |
60 | 1000.000 | 16/9 | m7 | minor 7th | C |
61 | 1016.667 | 9/5 | ^m7 | upminor 7th | ^C |
62 | 1033.333 | 20/11 | v~7 | downmid 7th | ^^C |
63 | 1050.000 | 11/6 | ~7 | mid 7th | ^3C |
64 | 1066.667 | 50/27 | ^~7 | upmid 7th | vvC# |
65 | 1083.333 | 15/8 | vM7 | downmajor 7th | vC# |
66 | 1100.000 | 66/35, 17/9 | M7 | major 7th | C# |
67 | 1116.667 | 21/11 | ^M7 | upmajor 7th | ^C# |
68 | 1133.333 | 27/14 | ^^M7 | double-upmajor 7th | ^^C# |
69 | 1150.000 | 35/18 | ^3M7, v38 |
triple-up major 7th, triple-down octave |
^3C#, v3D |
70 | 1166.667 | 49/25 | vv8 | double-down octave | vvD |
71 | 1183.333 | 99/50 | v8 | down octave | vD |
72 | 1200.000 | 2/1 | P8 | perfect octave | D |
Combining ups and downs notation with color notation, qualities can be loosely associated with colors:
quality | color | monzo format | examples |
---|---|---|---|
double-down minor | zo | {a, b, 0, 1} | 7/6, 7/4 |
minor | fourthward wa | {a, b}, b < -1 | 32/27, 16/9 |
upminor | gu | {a, b, -1} | 6/5, 9/5 |
mid | ilo | {a, b, 0, 0, 1} | 11/9, 11/6 |
" | lu | {a, b, 0, 0, -1} | 12/11, 18/11 |
downmajor | yo | {a, b, 1} | 5/4, 5/3 |
major | fifthward wa | {a, b}, b > 1 | 9/8, 27/16 |
double-up major | ru | {a, b, 0, -1} | 9/7, 12/7 |
All 72-edo chords can be named using ups and downs. An up, down or mid after the chord root affects the 3rd, 6th, 7th, and/or the 11th (every other note of a stacked-3rds chord 6-1-3-5-7-9-11-13). Alterations are always enclosed in parentheses, additions never are. Here are the zo, gu, ilo, yo and ru triads:
color of the 3rd | JI chord | notes as edosteps | notes of C chord | written name | spoken name |
---|---|---|---|---|---|
zo | 6:7:9 | 0-16-42 | C vvEb G | Cvvm | C double-down minor |
gu | 10:12:15 | 0-19-42 | C ^Eb G | C^m | C upminor |
ilo | 18:22:27 | 0-21-42 | C v3E G | C~ | C mid |
yo | 4:5:6 | 0-23-42 | C vE G | Cv | C downmajor or C down |
ru | 14:18:27 | 0-26-42 | C ^^E G | C^^ | C double-upmajor or C double-up |
For a more complete list, see Ups and Downs Notation #Chord names in other EDOs.
Just approximation
prime 2 | prime 3 | prime 5 | prime 7 | prime 11 | prime 13 | prime 17 | prime 19 | prime 23 | prime 29 | prime 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|
error (¢) | 0.000 | -1.955 | -2.980 | -2.159 | -1.318 | -7.194 | -4.955 | +2.487 | +5.059 | +3.755 | -4.964 |
Commas
Commas tempered out by 72edo include…
3-limit |
---|
Pythagorean comma = 531441/524288 = |-19 12> |
5-limit |
---|
kleisma = 15625/15552 = |-6 -5 6>
ampersand = 34171875/33554432 = |-25 7 6> graviton = 129140163/128000000 = |-13 17 -6> ennealimma = 7629394531250/7625597484987 = |1 -27 18> |
7-limit | 11-limit | 13-limit |
---|---|---|
...............................
225/224 1029/1024 2401/2400 4375/4374 16875/16807 19683/19600 420175/419904 250047/250000 |
.......................
243/242 385/384 441/440 540/539 1375/1372 3025/3024 4000/3993 6250/6237 9801/9800 |
.......................
169/168 325/324 351/350 364/363 625/624 676/675 729/728 1001/1000 1575/1573 1716/1715 2080/2079 6656/6655 |
Temperaments
72edo provides the optimal patent val for miracle and wizard in the 7-limit, miracle, catakleismic, bikleismic, compton, ennealimnic, ennealiminal, enneaportent, marvolo and catalytic in the 11-limit, and catakleismic, bikleismic, compton, comptone, enneaportent, ennealim, catalytic, marvolo, manna, hendec, lizard, neominor, hours, and semimiracle in the 13-limit.
Periods per octave |
Generator | Names |
---|---|---|
1 | 1\72 | Quincy |
1 | 5\72 | Marvolo |
1 | 7\72 | Miracle/benediction/manna |
1 | 11\72 | |
1 | 13\72 | |
1 | 17\72 | Neominor |
1 | 19\72 | Catakleismic |
1 | 23\72 | |
1 | 25\72 | Sqrtphi |
1 | 29\72 | |
1 | 31\72 | Marvo/zarvo |
1 | 35\72 | Cotritone |
2 | 1\72 | |
2 | 5\72 | Harry |
2 | 7\72 | |
2 | 11\72 | Unidec/hendec |
2 | 13\72 | Wizard/lizard/gizzard |
2 | 17\72 | |
3 | 1\72 | |
3 | 5\72 | Tritikleismic |
3 | 7\72 | |
3 | 11\72 | Mirkat |
4 | 1\72 | Quadritikleismic |
4 | 5\72 | |
4 | 7\72 | |
6 | 1\72 | |
6 | 5\72 | |
8 | 1\72 | Octoid |
8 | 2\72 | Octowerck |
8 | 4\72 | |
9 | 1\72 | |
9 | 3\72 | Ennealimmal/ennealimmic |
12 | 1\72 | Compton |
18 | 1\72 | Hemiennealimmal |
24 | 1\72 | Hours |
36 | 1\72 |
Scales
- smithgw72a, smithgw72b, smithgw72c, smithgw72d, smithgw72e, smithgw72f, smithgw72g, smithgw72h, smithgw72i, smithgw72j
- blackjack, miracle_8, miracle_10, miracle_12, miracle_12a, miracle_24hi, miracle_24lo
- keenanmarvel, xenakis_chrome, xenakis_diat, xenakis_schrome
- Euler(24255) genus in 72 equal
- JuneGloom
Harmonic Scale
Mode 8 of the harmonic series – overtones 8 through 16, octave repeating – is well-represented in 72edo. Note that all the different step sizes are distinguished, except for 13:12 and 14:13 (conflated to 8\72edo, 133.3 cents) and 15:14 and 16:15 (conflated to 7\72edo, 116.7 cents, the generator for miracle temperament).
Overtones in "Mode 8": | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | ||||||||
…as JI Ratio from 1/1: | 1/1 | 9/8 | 5/4 | 11/8 | 3/2 | 13/8 | 7/4 | 15/8 | 2/1 | ||||||||
…in cents: | 0 | 203.9 | 386.3 | 551.3 | 702.0 | 840.5 | 968.8 | 1088.3 | 1200.0 | ||||||||
Nearest degree of 72edo: | 0 | 12 | 23 | 33 | 42 | 50 | 58 | 65 | 72 | ||||||||
…in cents: | 0 | 200.0 | 383.3 | 550.0 | 700.0 | 833.3 | 966.7 | 1083.3 | 1200.0 | ||||||||
Steps as Freq. Ratio: | 9:8 | 10:9 | 11:10 | 12:11 | 13:12 | 14:13 | 15:14 | 16:15 | |||||||||
…in cents: | 203.9 | 182.4 | 165.0 | 150.6 | 138.6 | 128.3 | 119.4 | 111.7 | |||||||||
Nearest degree of 72edo: | 12 | 11 | 10 | 9 | 8 | 8 | 7 | 7 | |||||||||
...in cents: | 200.0 | 183.3 | 166.7 | 150.0 | 133.3 | 133.3 | 116.7 | 116.7 |
Z function
72edo is the ninth zeta integral edo, as well as being a peak and gap edo, and the maximum value of the Z function in the region near 72 occurs at 71.9506, giving an octave of 1200.824 cents, the stretched octaves of the zeta tuning. Below is a plot of Z in the region around 72.
Music
Kotekant play by Gene Ward Smith
Twinkle canon – 72 edo by Claudi Meneghin
Lazy Sunday by Jake Freivald in the lazysunday scale.
June Gloom #9 by Prent Rodgers
External links
- 72 equal temperament - Wikipedia
- OrthodoxWiki Article on Byzantine chant, which uses 72edo
- Wikipedia article on Joe Maneri (1927-2009)
- Ekmelic Music Society/Gesellschaft für Ekmelische Musik, a group of composers and researchers dedicated to 72edo music
- Rick Tagawa's 72edo site, including theory and composers' list
- Danny Wier, composer and musician who specializes in 72-edo