34edo: Difference between revisions
No edit summary |
|||
Line 117: | Line 117: | ||
! rowspan="2" |Degree | ! rowspan="2" |Degree | ||
! rowspan="2" |Solfege | ! rowspan="2" |Solfege | ||
! | ! colspan="3" | Cents | ||
! colspan=" | ! colspan="3" |pions | ||
! colspan=" | ! colspan="3" |7mus | ||
! | ! rowspan="2" | approx. ratios of | ||
2.3.5.13.17 [[subgroup|subgroup]] | 2.3.5.13.17 [[subgroup|subgroup]] | ||
! | ! rowspan="2" | additional ratios | ||
of 7 and 11 | of 7 and 11 | ||
Line 129: | Line 129: | ||
|- | |- | ||
!Pure octave | !Pure octave | ||
!45ed(7φ+6)\(5φ^2) | |||
!2ed25/24 | !2ed25/24 | ||
!Pure octave | !Pure octave | ||
!45ed(7φ+6)\(5φ^2) | |||
!2ed25/24 | !2ed25/24 | ||
!Pure octave | !Pure octave | ||
!45ed(7φ+6)\(5φ^2) | |||
!2ed25/24 | !2ed25/24 | ||
|- | |- | ||
| style="text-align:center;" | 0 | | style="text-align:center;" | 0 | ||
| style="text-align:center;" | do | | style="text-align:center;" | do | ||
| colspan=" | | colspan="9" style="text-align:right;" | 0<span style="color: #fff;">.000</span> | ||
| style="text-align:center;" | 1/1 | | style="text-align:center;" | 1/1 | ||
| style="text-align:center;" | | | style="text-align:center;" | | ||
Line 147: | Line 150: | ||
| style="text-align:center;" | di | | style="text-align:center;" | di | ||
| style="text-align:right;" | 35.294 | | style="text-align:right;" | 35.294 | ||
|35.296 | |||
|35.336 | |35.336 | ||
|37.412 | |37.412 | ||
|37.414 | |||
|37.456 | |37.456 | ||
|45.1765 (2D.2D2<sub>16</sub>) | |45.1765 (2D.2D2<sub>16</sub>) | ||
|45.179 (2D.2DE<sub>16</sub>) | |||
|45.23 (2D.3AF8<sub>16</sub>) | |45.23 (2D.3AF8<sub>16</sub>) | ||
| style="text-align:center;" | 128/125 ([[128/125|diesis]]), 51/50 | | style="text-align:center;" | 128/125 ([[128/125|diesis]]), 51/50 | ||
Line 161: | Line 167: | ||
| style="text-align:center;" | rih | | style="text-align:center;" | rih | ||
| style="text-align:right;" | 70.588 | | style="text-align:right;" | 70.588 | ||
|70.592 | |||
|70.672 | |70.672 | ||
|74.8235 | |74.8235 | ||
|74.828 | |||
|74.913 | |74.913 | ||
|90.353 (5A.5A5<sub>16</sub>) | |90.353 (5A.5A5<sub>16</sub>) | ||
|90.358 (5A.5BB<sub>16</sub>) | |||
|90.461 (5A.75F<sub>16</sub>) | |90.461 (5A.75F<sub>16</sub>) | ||
| style="text-align:center;" | 25/24, 648/625 ([[648/625|large diesis]]) | | style="text-align:center;" | 25/24, 648/625 ([[648/625|large diesis]]) | ||
Line 175: | Line 184: | ||
| style="text-align:center;" | ra | | style="text-align:center;" | ra | ||
| style="text-align:right;" | 105.882 | | style="text-align:right;" | 105.882 | ||
|105.8885 | |||
|106.008 | |106.008 | ||
|111.235 | |111.235 | ||
|112.242 | |||
|112.369 | |112.369 | ||
|135.529 (87.8788<sub>16</sub>) | |135.529 (87.8788<sub>16</sub>) | ||
|135.537 (87.899<sub>16</sub>) | |||
|135.691 (87.B0F<sub>16</sub>) | |135.691 (87.B0F<sub>16</sub>) | ||
| style="text-align:center;" | 17/16, 18/17, 16/15 | | style="text-align:center;" | 17/16, 18/17, 16/15 | ||
Line 189: | Line 201: | ||
| style="text-align:center;" | ru | | style="text-align:center;" | ru | ||
| style="text-align:right;" | 141.1765 | | style="text-align:right;" | 141.1765 | ||
|141.185 | |||
|141.345 | |141.345 | ||
|149.647 | |149.647 | ||
|149.656 | |||
|149.8255 | |149.8255 | ||
|180.706 (B4.B4B<sub>16</sub>) | |180.706 (B4.B4B<sub>16</sub>) | ||
|180.716 (B4.B77<sub>16</sub>) | |||
|180.921 (B4.EBE<sub>16</sub>) | |180.921 (B4.EBE<sub>16</sub>) | ||
| style="text-align:center;" | 13/12 | | style="text-align:center;" | 13/12 | ||
Line 203: | Line 218: | ||
| style="text-align:center;" | reh | | style="text-align:center;" | reh | ||
| style="text-align:right;" | 176.471 | | style="text-align:right;" | 176.471 | ||
|176.481 | |||
|176.681 | |176.681 | ||
|187.059 | |187.059 | ||
|187.07 | |||
|187.282 | |187.282 | ||
|225.882 (E1.E1E<sub>16</sub>) | |225.882 (E1.E1E<sub>16</sub>) | ||
|225.896 (E1.E54<sub>16</sub>) | |||
|226.152 (E2.26E<sub>16</sub>) | |226.152 (E2.26E<sub>16</sub>) | ||
| style="text-align:center;" | 10/9 | | style="text-align:center;" | 10/9 | ||
Line 217: | Line 235: | ||
| style="text-align:center;" | re | | style="text-align:center;" | re | ||
| style="text-align:right;" | 211.765 | | style="text-align:right;" | 211.765 | ||
|211.777 | |||
|212.017 | |212.017 | ||
|224.471 | |224.471 | ||
|224.484 | |||
|224.738 | |224.738 | ||
|271.059 (10F.0F1<sub>16</sub>) | |271.059 (10F.0F1<sub>16</sub>) | ||
|271.075 (10F.132<sub>16</sub>) | |||
|271.382 (10F.61D<sub>16</sub>) | |271.382 (10F.61D<sub>16</sub>) | ||
| style="text-align:center;" | 9/8, 17/15 | | style="text-align:center;" | 9/8, 17/15 | ||
Line 231: | Line 252: | ||
| style="text-align:center;" | raw | | style="text-align:center;" | raw | ||
| style="text-align:right;" | 247.059 | | style="text-align:right;" | 247.059 | ||
|247.073 | |||
|247.3535 | |247.3535 | ||
|261.882 | |261.882 | ||
|261.898 | |||
|262.195 | |262.195 | ||
|326.235 (13C.3C3<sub>16</sub>) | |326.235 (13C.3C3<sub>16</sub>) | ||
|316.254 (13C.40F8<sub>16</sub>) | |||
|316.6125 (13C.7EA<sub>16</sub>) | |316.6125 (13C.7EA<sub>16</sub>) | ||
| style="text-align:center;" | 15/13 | | style="text-align:center;" | 15/13 | ||
Line 245: | Line 269: | ||
| style="text-align:center;" | meh | | style="text-align:center;" | meh | ||
| style="text-align:right;" | 282.353 | | style="text-align:right;" | 282.353 | ||
|282.3695 | |||
|282.69 | |282.69 | ||
|299.294 | |299.294 | ||
|299.312 | |||
|299.651 | |299.651 | ||
|361.412 (169.696<sub>16</sub>) | |361.412 (169.696<sub>16</sub>) | ||
|361.433 (169.6ED<sub>16</sub>) | |||
|361.843 (169.D7C<sub>16</sub>) | |361.843 (169.D7C<sub>16</sub>) | ||
| style="text-align:center;" | 20/17, 75/64 | | style="text-align:center;" | 20/17, 75/64 | ||
Line 259: | Line 286: | ||
| style="text-align:center;" | me | | style="text-align:center;" | me | ||
| style="text-align:right;" | 317.647 | | style="text-align:right;" | 317.647 | ||
|317.666 | |||
|318.026 | |318.026 | ||
|336.706 | |336.706 | ||
|336.726 | |||
|337.1075 | |337.1075 | ||
|406.588 (196.969<sub>16</sub>) | |406.588 (196.969<sub>16</sub>) | ||
|406.612 (196.9CB<sub>16</sub>) | |||
|407.073 (197.12C<sub>16</sub>) | |407.073 (197.12C<sub>16</sub>) | ||
| style="text-align:center;" | 6/5 | | style="text-align:center;" | 6/5 | ||
Line 273: | Line 303: | ||
| style="text-align:center;" | mu | | style="text-align:center;" | mu | ||
| style="text-align:right;" | 352.941 | | style="text-align:right;" | 352.941 | ||
|352.962 | |||
|353.362 | |353.362 | ||
|374.118 | |374.118 | ||
|374.1395 | |||
|374.564 | |374.564 | ||
|451.765 (1C3.C3C<sub>16</sub>) | |451.765 (1C3.C3C<sub>16</sub>) | ||
|451.791 (1C3.CA8<sub>16</sub>) | |||
|452.3035 (1C4.4DB<sub>16</sub>) | |452.3035 (1C4.4DB<sub>16</sub>) | ||
| style="text-align:center;" | 16/13 | | style="text-align:center;" | 16/13 | ||
Line 287: | Line 320: | ||
| style="text-align:center;" | mi | | style="text-align:center;" | mi | ||
| style="text-align:right;" | 388.235 | | style="text-align:right;" | 388.235 | ||
|388.258 | |||
|388.698 | |388.698 | ||
|411.529 | |411.529 | ||
|411.5535 | |||
|412.02 | |412.02 | ||
|496.941 (1F0.F0F<sub>16</sub>) | |496.941 (1F0.F0F<sub>16</sub>) | ||
|496.97 (1F0.F86<sub>16</sub>) | |||
|497.534 (1F1.88B<sub>16</sub>) | |497.534 (1F1.88B<sub>16</sub>) | ||
| style="text-align:center;" | 5/4 | | style="text-align:center;" | 5/4 | ||
Line 301: | Line 337: | ||
| style="text-align:center;" | maa | | style="text-align:center;" | maa | ||
| style="text-align:right;" | 423.529 | | style="text-align:right;" | 423.529 | ||
|423.554 | |||
|424.035 | |424.035 | ||
|448.941 | |448.941 | ||
|448.967 | |||
|449.477 | |449.477 | ||
|542.118 (21E.1E1<sub>16</sub>) | |542.118 (21E.1E1<sub>16</sub>) | ||
|542.149 (21E.264<sub>16</sub>) | |||
|542.764 (21E.C3A<sub>16</sub>) | |542.764 (21E.C3A<sub>16</sub>) | ||
| style="text-align:center;" | [[51/40|51/40]], 32/25 | | style="text-align:center;" | [[51/40|51/40]], 32/25 | ||
Line 315: | Line 354: | ||
| style="text-align:center;" | maw | | style="text-align:center;" | maw | ||
| style="text-align:right;" | 458.8235 | | style="text-align:right;" | 458.8235 | ||
|458.85 | |||
|459.371 | |459.371 | ||
|486.353 | |486.353 | ||
|486.381 | |||
|486.933 | |486.933 | ||
|587.294 (24B.4B4<sub>16</sub>) | |587.294 (24B.4B4<sub>16</sub>) | ||
|587.3285 (24B.541<sub>16</sub>) | |||
|587.995 (24B.FEA<sub>16</sub>) | |587.995 (24B.FEA<sub>16</sub>) | ||
| style="text-align:center;" | 13/10, 17/13 | | style="text-align:center;" | 13/10, 17/13 | ||
Line 329: | Line 371: | ||
| style="text-align:center;" | fa | | style="text-align:center;" | fa | ||
| style="text-align:right;" | 494.118 | | style="text-align:right;" | 494.118 | ||
|494.1465 | |||
|494.707 | |494.707 | ||
|523.765 | |523.765 | ||
|523.795 | |||
|524.389 | |524.389 | ||
|632.471 (278.7878<sub>16</sub>) | |632.471 (278.7878<sub>16</sub>) | ||
|632.508 (278.81F<sub>16</sub>) | |||
|633.225 (279.399A<sub>16</sub>) | |633.225 (279.399A<sub>16</sub>) | ||
| style="text-align:center;" | 4/3 | | style="text-align:center;" | 4/3 | ||
Line 343: | Line 388: | ||
| style="text-align:center;" | fih | | style="text-align:center;" | fih | ||
| style="text-align:right;" | 529.412 | | style="text-align:right;" | 529.412 | ||
|529.443 | |||
|530.043 | |530.043 | ||
|561.1765 | |561.1765 | ||
|561.209 | |||
|561.846 | |561.846 | ||
|677.647 (2A5.A5A<sub>16</sub>) | |677.647 (2A5.A5A<sub>16</sub>) | ||
|677.687 (2A5.AFD<sub>16</sub>) | |||
|678.455 (2A6.749<sub>16</sub>) | |678.455 (2A6.749<sub>16</sub>) | ||
| style="text-align:center;" |512/375, 34/25 | | style="text-align:center;" |512/375, 34/25 | ||
Line 357: | Line 405: | ||
| style="text-align:center;" | fu | | style="text-align:center;" | fu | ||
| style="text-align:right;" | 564.706 | | style="text-align:right;" | 564.706 | ||
|564.739 | |||
|565.379 | |565.379 | ||
|598.588 | |598.588 | ||
|598.623 | |||
|599.302 | |599.302 | ||
|722.8235 (2D2.D2D<sub>16</sub>) | |722.8235 (2D2.D2D<sub>16</sub>) | ||
|722.866 (2D2.DDA<sub>16</sub>) | |||
|723.686 (2D3.AF8<sub>16</sub>) | |723.686 (2D3.AF8<sub>16</sub>) | ||
| style="text-align:center;" | 36/25, 18/13 | | style="text-align:center;" | 36/25, 18/13 | ||
Line 371: | Line 422: | ||
| style="text-align:center;" | fi/se | | style="text-align:center;" | fi/se | ||
| style="text-align:right;" | 600<span style="color: #fff;">.000</span> | | style="text-align:right;" | 600<span style="color: #fff;">.000</span> | ||
|600.035 | |||
|600.716 | |600.716 | ||
|636 | |636 | ||
|636.037 | |||
|636.758 | |636.758 | ||
|768 (300<sub>16</sub>) | |768 (300<sub>16</sub>) | ||
|768.045 (300.0B8<sub>16</sub>) | |||
|768.916 (300.EA8<sub>16,)</sub> | |768.916 (300.EA8<sub>16,)</sub> | ||
| style="text-align:center;" | 17/12, 24/17 | | style="text-align:center;" | 17/12, 24/17 | ||
Line 385: | Line 439: | ||
| style="text-align:center;" | su | | style="text-align:center;" | su | ||
| style="text-align:right;" | 635.294 | | style="text-align:right;" | 635.294 | ||
|635.331 | |||
|636.052 | |636.052 | ||
|673.412 | |673.412 | ||
|673.451 | |||
|674.215 | |674.215 | ||
|813.1765 (32D.2D2<sub>16</sub>) | |813.1765 (32D.2D2<sub>16</sub>) | ||
|813.224 (32D.396<sub>16</sub>) | |||
|814.146 (32E.2578<sub>16</sub>) | |814.146 (32E.2578<sub>16</sub>) | ||
| style="text-align:center;" | 25/18, 13/9 | | style="text-align:center;" | 25/18, 13/9 | ||
Line 399: | Line 456: | ||
| style="text-align:center;" | sih | | style="text-align:center;" | sih | ||
| style="text-align:right;" | 670.588 | | style="text-align:right;" | 670.588 | ||
|670.627 | |||
|671.388 | |671.388 | ||
|710.8235 | |710.8235 | ||
|710.865 | |||
|711.671 | |711.671 | ||
|858.353 (35A.5A5<sub>16</sub>) | |858.353 (35A.5A5<sub>16</sub>) | ||
|858.403 (35A.673<sub>16</sub>) | |||
|859.377 (35B.607<sub>16</sub>) | |859.377 (35B.607<sub>16</sub>) | ||
| style="text-align:center;" |375/256, 25/17 | | style="text-align:center;" |375/256, 25/17 | ||
Line 413: | Line 473: | ||
| style="text-align:center;" | sol | | style="text-align:center;" | sol | ||
| style="text-align:right;" | 705.882 | | style="text-align:right;" | 705.882 | ||
|705.924 | |||
|706.724 | |706.724 | ||
|748.235 | |748.235 | ||
|748.279 | |||
|749.128 | |749.128 | ||
|903.529 (387.8788<sub>16</sub>) | |903.529 (387.8788<sub>16</sub>) | ||
|903.582 (387.951<sub>16</sub>) | |||
|904.607 (388.9B7<sub>16</sub>) | |904.607 (388.9B7<sub>16</sub>) | ||
| style="text-align:center;" | 3/2 | | style="text-align:center;" | 3/2 | ||
Line 427: | Line 490: | ||
| style="text-align:center;" | saw | | style="text-align:center;" | saw | ||
| style="text-align:right;" | 741.1765 | | style="text-align:right;" | 741.1765 | ||
|741.22 | |||
|742.0605 | |742.0605 | ||
|785.647 | |785.647 | ||
|785.693 | |||
|786.584 | |786.584 | ||
|948.706 (3B4.B4B<sub>16</sub>) | |948.706 (3B4.B4B<sub>16</sub>) | ||
|948.761 (3B4.C2E8<sub>16</sub>) | |||
|949.837 (3B5.D66<sub>16</sub>) | |949.837 (3B5.D66<sub>16</sub>) | ||
| style="text-align:center;" | 20/13, 26/17 | | style="text-align:center;" | 20/13, 26/17 | ||
Line 441: | Line 507: | ||
| style="text-align:center;" | leh | | style="text-align:center;" | leh | ||
| style="text-align:right;" | 776.471 | | style="text-align:right;" | 776.471 | ||
|776.516 | |||
|777.397 | |777.397 | ||
|823.059 | |823.059 | ||
|823.107 | |||
|824.0405 | |824.0405 | ||
|993.882 (3E1.E1E<sub>16</sub>) | |993.882 (3E1.E1E<sub>16</sub>) | ||
|993.9405 (3E1.F0C<sub>16</sub>) | |||
|995.068 (3E3.116<sub>16</sub>) | |995.068 (3E3.116<sub>16</sub>) | ||
| style="text-align:center;" | 25/16, 80/51 | | style="text-align:center;" | 25/16, 80/51 | ||
Line 455: | Line 524: | ||
| style="text-align:center;" | le | | style="text-align:center;" | le | ||
| style="text-align:right;" | 811.765 | | style="text-align:right;" | 811.765 | ||
|811.812 | |||
|812.733 | |812.733 | ||
|860.471 | |860.471 | ||
|860.521 | |||
|861.497 | |861.497 | ||
|1039.059 (40F.0F1<sub>16</sub>) | |1039.059 (40F.0F1<sub>16</sub>) | ||
|1039.12 (40F.1EA<sub>16</sub>) | |||
|1040.298 (410.4C5<sub>16</sub>) | |1040.298 (410.4C5<sub>16</sub>) | ||
| style="text-align:center;" | 8/5 | | style="text-align:center;" | 8/5 | ||
Line 469: | Line 541: | ||
| style="text-align:center;" | lu | | style="text-align:center;" | lu | ||
| style="text-align:right;" | 847.059 | | style="text-align:right;" | 847.059 | ||
|847.108 | |||
|848.069 | |848.069 | ||
|897.882 | |897.882 | ||
|897.935 | |||
|898.953 | |898.953 | ||
|1084.235 (43C.3C3<sub>16</sub>) | |1084.235 (43C.3C3<sub>16</sub>) | ||
|1084.299 (43C.4C7<sub>16</sub>) | |||
|1085.5285 (43D.874<sub>16</sub>) | |1085.5285 (43D.874<sub>16</sub>) | ||
| style="text-align:center;" | 13/8 | | style="text-align:center;" | 13/8 | ||
Line 483: | Line 558: | ||
| style="text-align:center;" | la | | style="text-align:center;" | la | ||
| style="text-align:right;" | 882.353 | | style="text-align:right;" | 882.353 | ||
|882.4045 | |||
|883.405 | |883.405 | ||
|935.294 | |935.294 | ||
|935.349 | |||
|936.41 | |936.41 | ||
|1129.412 (469.696<sub>16</sub>) | |1129.412 (469.696<sub>16</sub>) | ||
|1129.478 (469.7A5<sub>16</sub>) | |||
|1130.759 (46A.C42<sub>16</sub>) | |1130.759 (46A.C42<sub>16</sub>) | ||
| style="text-align:center;" | 5/3 | | style="text-align:center;" | 5/3 | ||
Line 497: | Line 575: | ||
| style="text-align:center;" | laa | | style="text-align:center;" | laa | ||
| style="text-align:right;" | 917.647 | | style="text-align:right;" | 917.647 | ||
|917.701 | |||
|918.7415 | |918.7415 | ||
|972.706 | |972.706 | ||
|972.763 | |||
|973.866 | |973.866 | ||
|1174.588 (496.969<sub>16</sub>) | |1174.588 (496.969<sub>16</sub>) | ||
|1174.657 (496.A83<sub>16</sub>) | |||
|1175.989 (497.FD4<sub>16</sub>) | |1175.989 (497.FD4<sub>16</sub>) | ||
| style="text-align:center;" | [[17/10|17/10]] | | style="text-align:center;" | [[17/10|17/10]] | ||
Line 511: | Line 592: | ||
| style="text-align:center;" | law | | style="text-align:center;" | law | ||
| style="text-align:right;" | 952.941 | | style="text-align:right;" | 952.941 | ||
|952.997 | |||
|954.078 | |954.078 | ||
|1010.118 | |1010.118 | ||
|1010.177 | |||
|1011.322 | |1011.322 | ||
|1219.765 (4C3.C3C<sub>16</sub>) | |1219.765 (4C3.C3C<sub>16</sub>) | ||
|1219.836 (4C3.D6<sub>16</sub>) | |||
|1221.2195 (4C5.383<sub>16</sub>) | |1221.2195 (4C5.383<sub>16</sub>) | ||
| style="text-align:center;" | 26/15 | | style="text-align:center;" | 26/15 | ||
Line 525: | Line 609: | ||
| style="text-align:center;" | teh | | style="text-align:center;" | teh | ||
| style="text-align:right;" | 988.235 | | style="text-align:right;" | 988.235 | ||
|988.293 | |||
|989.414 | |989.414 | ||
|1047.529 | |1047.529 | ||
|1047.591 | |||
|1048.779 | |1048.779 | ||
|1264.941 (4F0.F0F<sub>16</sub>) | |1264.941 (4F0.F0F<sub>16</sub>) | ||
|1265.015 (4F1.03E<sub>16</sub>) | |||
|1266.45 (4F2.733<sub>16</sub>) | |1266.45 (4F2.733<sub>16</sub>) | ||
| style="text-align:center;" | 16/9, 30/17 | | style="text-align:center;" | 16/9, 30/17 | ||
Line 539: | Line 626: | ||
| style="text-align:center;" | te | | style="text-align:center;" | te | ||
| style="text-align:right;" | 1023.529 | | style="text-align:right;" | 1023.529 | ||
|1,023.589 | |||
|1024.75 | |1024.75 | ||
|1084.941 | |1084.941 | ||
|1085.005 | |||
|1086.235 | |1086.235 | ||
|1310.118 (51E.1E1<sub>16</sub>) | |1310.118 (51E.1E1<sub>16</sub>) | ||
|1310.194 (51E.31C<sub>16</sub>) | |||
|1311.68 (51F.AE2<sub>16</sub>) | |1311.68 (51F.AE2<sub>16</sub>) | ||
| style="text-align:center;" | 9/5 | | style="text-align:center;" | 9/5 | ||
Line 553: | Line 643: | ||
| style="text-align:center;" | tu | | style="text-align:center;" | tu | ||
| style="text-align:right;" | 1058.8235 | | style="text-align:right;" | 1058.8235 | ||
|1,058.885 | |||
|1060.086 | |1060.086 | ||
|1122.353 | |1122.353 | ||
|1122.419 | |||
|1123.692 | |1123.692 | ||
|1355.294 (54B.4B4<sub>16</sub>) | |1355.294 (54B.4B4<sub>16</sub>) | ||
|1355.373 (54B.5F9<sub>16</sub>) | |||
|1356.911 (54C.E91<sub>16</sub>) | |1356.911 (54C.E91<sub>16</sub>) | ||
| style="text-align:center;" | 24/13 | | style="text-align:center;" | 24/13 | ||
Line 567: | Line 660: | ||
| style="text-align:center;" | ti | | style="text-align:center;" | ti | ||
| style="text-align:right;" | 1094.118 | | style="text-align:right;" | 1094.118 | ||
|1,094.182 | |||
|1095.423 | |1095.423 | ||
|1149.765 | |1149.765 | ||
|1159.8325 | |||
|1161.148 | |1161.148 | ||
|1400.471 (578.7878<sub>16</sub>) | |1400.471 (578.7878<sub>16</sub>) | ||
|1400.5525 (578.8D7<sub>16</sub>) | |||
|1402.141 (57A.241<sub>16</sub>) | |1402.141 (57A.241<sub>16</sub>) | ||
| style="text-align:center;" | 32/17, 17/9, 15/8 | | style="text-align:center;" | 32/17, 17/9, 15/8 | ||
Line 581: | Line 677: | ||
| style="text-align:center;" | taa | | style="text-align:center;" | taa | ||
| style="text-align:right;" | 1129.412 | | style="text-align:right;" | 1129.412 | ||
|1,129.478 | |||
|1130.759 | |1130.759 | ||
|1197.1765 | |1197.1765 | ||
|1197.2465 | |||
|1198.604 | |1198.604 | ||
|1445.647 (5A5.A5A<sub>16</sub>) | |1445.647 (5A5.A5A<sub>16</sub>) | ||
|1445.732 (5A5.BB5<sub>16</sub>) | |||
|1447.371 (5A7.5F1<sub>16</sub>) | |1447.371 (5A7.5F1<sub>16</sub>) | ||
| style="text-align:center;" | 48/25, 625/324 | | style="text-align:center;" | 48/25, 625/324 | ||
Line 595: | Line 694: | ||
| style="text-align:center;" | da | | style="text-align:center;" | da | ||
| style="text-align:right;" | 1164.706 | | style="text-align:right;" | 1164.706 | ||
|1,164.774 | |||
|1166.095 | |1166.095 | ||
|1234.588 | |1234.588 | ||
|1234.66 | |||
|1236.061 | |1236.061 | ||
|1490.8235 (5D2.D2D<sub>16</sub>) | |1490.8235 (5D2.D2D<sub>16</sub>) | ||
|1490.911 (5D2.E92<sub>16</sub>) | |||
|1492.602 (5D4.9A1<sub>16</sub>) | |1492.602 (5D4.9A1<sub>16</sub>) | ||
| style="text-align:center;" | 125/64, 100/51 | | style="text-align:center;" | 125/64, 100/51 | ||
Line 609: | Line 711: | ||
| style="text-align:center;" | do | | style="text-align:center;" | do | ||
| style="text-align:right;" | 1200<span style="color: #fff;">.000</span> | | style="text-align:right;" | 1200<span style="color: #fff;">.000</span> | ||
|1,200.07 | |||
|1201.431 | |1201.431 | ||
|1272 | |1272 | ||
|1272.074 | |||
|1273.52 | |1273.52 | ||
|1536 (600<sub>16</sub>) | |1536 (600<sub>16</sub>) | ||
|1536.09 (600.17<sub>16</sub>) | |||
|1537.832 (601.D5<sub>6F</sub>) | |1537.832 (601.D5<sub>6F</sub>) | ||
| style="text-align:center;" | 2/1 | | style="text-align:center;" | 2/1 |
Revision as of 20:53, 3 June 2019
34edo divides the octave into 34 equal steps of approximately 35.29412 cents. 34edo contains two 17edo's and the half-octave tritone of 600 cents. It excels as a 5-limit system, with tuning even more accurate than 31edo, but with a sharp fifth rather than a flat one, and supports hanson, srutal, tetracot, würschmidt and vishnu temperaments. It does less well in the 7-limit, with two mappings possible for 7/4: a flat one from the patent val, and a sharp one from the 34d val. By way of the patent val 34 supports keemun temperament, and 34d is an excellent alternative to 22edo for 7-limit pajara temperament. In the 11-limit, 34de supports 11-limit pajaric, and in fact is quite close to the POTE tuning; it adds 4375/4374 to the commas of 11-limit pajaric. On the other hand, the 34d val supports pajara, vishnu and würschmidt, adding 4375/4374 to the commas of pajara. Among subgroup temperaments, the patent val supports semaphore on the 2.3.7 subgroup.
Approximations to Just Intonation
Like 17edo, 34edo contains good approximations of just intervals involving 13 and 3 -- specifically, 13/8, 13/12, 13/9 and their inversions -- while failing to closely approximate ratios of 7 or 11.* 34edo adds ratios of 5 into the mix -- including 5/4, 6/5, 9/5, 15/8, 13/10, 15/13, and their inversions -- as well as 17 -- including 17/16, 18/17, 17/12, 17/10, 17/13, 17/15 and their inversions. Since it distinguishes between 9/8 and 10/9 (exaggerating the difference between them, the "syntonic comma" of 81/80, from 21.5 cents to 35.3 cents), it is suitable for 5-limit JI. It is not a meantone system. In layman's terms while no number of fifths (frequently ratios of ~3:2) land on major or minor thirds, an even number of major or minor thirds, technically will be the same pitch as one somewhere upon the cycle of seventeen fifths.
Viewed in light of Western diatonic theory, the three extra steps (of 34-et compared to 31-et) in effect widen the intervals between C and D, F and G, and A and B [that is: 6 5 3 6 5 6 3], thus making a distinction between major tones, ratio 9/8 and minor tones, ratio 10/9. (Wikipedia)
- The sharpening of ~13 cents of 11/8 can fit with the 9/8 and 13/8 which both are about 7 cents sharp. This the basis of a subtle trick: the guitarist tunes the high 'E' string flat by several cents, enough to be imperceptible in many contexts, but which makes chords/harmonies against those several intervals tuned more justly.
Likewise the 16-cent flat 27\34 approximate 7/4 can be musically useful. It is an improvement over the yet sharper "dominant seventh" found in jazz - which some listeners are accustomed to. The ability to tolerate these errors may depend on subtle natural changes in mood. A few cents either way can bother the hell out of one, but on other days you might spend an hour not knowing of the strings are, or being able to, tuned. Nevertheless 68edo (34 x 2) preserves the structure and has these intervals 7/8 and 11/8 in more perfect form... nearly just.
34edo and phi
As a Fibonacci number, 34edo contains a fraction of an octave which is close approximation to the irrational interval phi -- 21 degrees of 34edo, approximately 741.2 cents. Repeated iterations of this interval generates Moment of Symmetry scales with near-phi relationships between the step sizes. As a 2.3.5.13 temperament, the 21\34 generator is an approximate 20/13, and the temperament tempers out 512/507 and | -6 2 6 0 0 -13 >. From the tempering of 512/507, two 16/13 neutral thirds are an approximate 3/2, defining an essentially tempered neutral triad with a sharp rather than a flat fifth. Yes. But, to be clear the harmonic ratio of phi is ~ 833 cents, and the equal divisions of octave approximating this interval closely are 13edo and 36edo.
Rank two temperaments
List of 34edo rank two temperaments by badness
Periods
per octave |
Generator | Cents | Linear temperaments |
---|---|---|---|
1 | 1\34 | 35.294 | |
3\34 | 105.882 | ||
5\34 | 176.471 | Tetracot/Bunya/Monkey | |
7\34 | 247.059 | Immunity | |
9\34 | 317.647 | Hanson/Keemun | |
11\34 | 388.235 | Wuerschmidt/Worschmidt | |
13\34 | 458.824 | ||
15\34 | 529.412 | ||
2 | 1\34 | 35.294 | |
2\34 | 70.588 | Vishnu | |
3\34 | 105.882 | Srutal/Pajara/Diaschismic | |
4\34 | 141.176 | Fifive | |
5\34 | 176.471 | ||
6\34 | 211.765 | ||
7\34 | 247.059 | ||
8\34 | 282.353 | ||
17 | 1\34 | 35.294 |
Intervals
Degree | Solfege | Cents | pions | 7mus | approx. ratios of
2.3.5.13.17 subgroup |
additional ratios
of 7 and 11 |
ups and downs notation | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pure octave | 45ed(7φ+6)\(5φ^2) | 2ed25/24 | Pure octave | 45ed(7φ+6)\(5φ^2) | 2ed25/24 | Pure octave | 45ed(7φ+6)\(5φ^2) | 2ed25/24 | |||||||
0 | do | 0.000 | 1/1 | P1 | perfect unison | D | |||||||||
1 | di | 35.294 | 35.296 | 35.336 | 37.412 | 37.414 | 37.456 | 45.1765 (2D.2D216) | 45.179 (2D.2DE16) | 45.23 (2D.3AF816) | 128/125 (diesis), 51/50 | 50/49, 49/48 | ^1, vm2 | up unison, downminor 2nd | D^, Ebv |
2 | rih | 70.588 | 70.592 | 70.672 | 74.8235 | 74.828 | 74.913 | 90.353 (5A.5A516) | 90.358 (5A.5BB16) | 90.461 (5A.75F16) | 25/24, 648/625 (large diesis) | m2 | minor 2nd | Eb | |
3 | ra | 105.882 | 105.8885 | 106.008 | 111.235 | 112.242 | 112.369 | 135.529 (87.878816) | 135.537 (87.89916) | 135.691 (87.B0F16) | 17/16, 18/17, 16/15 | 15/14 | ^m2 | upminor 2nd | Eb^ |
4 | ru | 141.1765 | 141.185 | 141.345 | 149.647 | 149.656 | 149.8255 | 180.706 (B4.B4B16) | 180.716 (B4.B7716) | 180.921 (B4.EBE16) | 13/12 | 14/13, 12/11 | ~2 | mid 2nd | Evv |
5 | reh | 176.471 | 176.481 | 176.681 | 187.059 | 187.07 | 187.282 | 225.882 (E1.E1E16) | 225.896 (E1.E5416) | 226.152 (E2.26E16) | 10/9 | 11/10 | vM2 | downmajor 2nd | Ev |
6 | re | 211.765 | 211.777 | 212.017 | 224.471 | 224.484 | 224.738 | 271.059 (10F.0F116) | 271.075 (10F.13216) | 271.382 (10F.61D16) | 9/8, 17/15 | M2 | major 2nd | E | |
7 | raw | 247.059 | 247.073 | 247.3535 | 261.882 | 261.898 | 262.195 | 326.235 (13C.3C316) | 316.254 (13C.40F816) | 316.6125 (13C.7EA16) | 15/13 | 8/7 | ^M2, vm3 | upmajor 2nd, downminor 3rd | E^, Fv |
8 | meh | 282.353 | 282.3695 | 282.69 | 299.294 | 299.312 | 299.651 | 361.412 (169.69616) | 361.433 (169.6ED16) | 361.843 (169.D7C16) | 20/17, 75/64 | 7/6, 13/11 | m3 | minor 3rd | F |
9 | me | 317.647 | 317.666 | 318.026 | 336.706 | 336.726 | 337.1075 | 406.588 (196.96916) | 406.612 (196.9CB16) | 407.073 (197.12C16) | 6/5 | 17/14 | ^m3 | upminor 3rd | F^ |
10 | mu | 352.941 | 352.962 | 353.362 | 374.118 | 374.1395 | 374.564 | 451.765 (1C3.C3C16) | 451.791 (1C3.CA816) | 452.3035 (1C4.4DB16) | 16/13 | 11/9 | ~3 | mid 3rd | F^^ |
11 | mi | 388.235 | 388.258 | 388.698 | 411.529 | 411.5535 | 412.02 | 496.941 (1F0.F0F16) | 496.97 (1F0.F8616) | 497.534 (1F1.88B16) | 5/4 | vM3 | downmajor 3rd | F#v | |
12 | maa | 423.529 | 423.554 | 424.035 | 448.941 | 448.967 | 449.477 | 542.118 (21E.1E116) | 542.149 (21E.26416) | 542.764 (21E.C3A16) | 51/40, 32/25 | 14/11, 9/7 | M3 | major 3rd | F# |
13 | maw | 458.8235 | 458.85 | 459.371 | 486.353 | 486.381 | 486.933 | 587.294 (24B.4B416) | 587.3285 (24B.54116) | 587.995 (24B.FEA16) | 13/10, 17/13 | 22/17 | ^M3, v4 | upmajor 3rd,down 4th | F#^, Gv |
14 | fa | 494.118 | 494.1465 | 494.707 | 523.765 | 523.795 | 524.389 | 632.471 (278.787816) | 632.508 (278.81F16) | 633.225 (279.399A16) | 4/3 | P4 | 4th | G | |
15 | fih | 529.412 | 529.443 | 530.043 | 561.1765 | 561.209 | 561.846 | 677.647 (2A5.A5A16) | 677.687 (2A5.AFD16) | 678.455 (2A6.74916) | 512/375, 34/25 | 15/11 | ^4 | up 4th | G^ |
16 | fu | 564.706 | 564.739 | 565.379 | 598.588 | 598.623 | 599.302 | 722.8235 (2D2.D2D16) | 722.866 (2D2.DDA16) | 723.686 (2D3.AF816) | 36/25, 18/13 | 11/8 | ^^4, d5 | double-up 4th, dim 5th | G^^, Ab |
17 | fi/se | 600.000 | 600.035 | 600.716 | 636 | 636.037 | 636.758 | 768 (30016) | 768.045 (300.0B816) | 768.916 (300.EA816,) | 17/12, 24/17 | 7/5, 10/7 | vA4, ^d5 | downaug 4th, updim 5th | G#v, Ab^ |
18 | su | 635.294 | 635.331 | 636.052 | 673.412 | 673.451 | 674.215 | 813.1765 (32D.2D216) | 813.224 (32D.39616) | 814.146 (32E.257816) | 25/18, 13/9 | 16/11 | A4, vv5 | aug 4th, double-down 5th | G#, Avv |
19 | sih | 670.588 | 670.627 | 671.388 | 710.8235 | 710.865 | 711.671 | 858.353 (35A.5A516) | 858.403 (35A.67316) | 859.377 (35B.60716) | 375/256, 25/17 | 22/15 | v5 | down 5th | Av |
20 | sol | 705.882 | 705.924 | 706.724 | 748.235 | 748.279 | 749.128 | 903.529 (387.878816) | 903.582 (387.95116) | 904.607 (388.9B716) | 3/2 | P5 | perfect 5th | A | |
21 | saw | 741.1765 | 741.22 | 742.0605 | 785.647 | 785.693 | 786.584 | 948.706 (3B4.B4B16) | 948.761 (3B4.C2E816) | 949.837 (3B5.D6616) | 20/13, 26/17 | 17/11 | ^5, vm6 | up 5th, downminor 6th | A^, Bbv |
22 | leh | 776.471 | 776.516 | 777.397 | 823.059 | 823.107 | 824.0405 | 993.882 (3E1.E1E16) | 993.9405 (3E1.F0C16) | 995.068 (3E3.11616) | 25/16, 80/51 | 14/9 | m6 | minor 6th | Bb |
23 | le | 811.765 | 811.812 | 812.733 | 860.471 | 860.521 | 861.497 | 1039.059 (40F.0F116) | 1039.12 (40F.1EA16) | 1040.298 (410.4C516) | 8/5 | ^m6 | upminor 6th | Bb^ | |
24 | lu | 847.059 | 847.108 | 848.069 | 897.882 | 897.935 | 898.953 | 1084.235 (43C.3C316) | 1084.299 (43C.4C716) | 1085.5285 (43D.87416) | 13/8 | 18/11 | ~6 | mid 6th | Bvv |
25 | la | 882.353 | 882.4045 | 883.405 | 935.294 | 935.349 | 936.41 | 1129.412 (469.69616) | 1129.478 (469.7A516) | 1130.759 (46A.C4216) | 5/3 | 28/17 | vM6 | downmajor 6th | Bv |
26 | laa | 917.647 | 917.701 | 918.7415 | 972.706 | 972.763 | 973.866 | 1174.588 (496.96916) | 1174.657 (496.A8316) | 1175.989 (497.FD416) | 17/10 | 12/7, 22/13 | M6 | major 6th | B |
27 | law | 952.941 | 952.997 | 954.078 | 1010.118 | 1010.177 | 1011.322 | 1219.765 (4C3.C3C16) | 1219.836 (4C3.D616) | 1221.2195 (4C5.38316) | 26/15 | 7/4 | ^M6, vm7 | upmajor 6th, downminor 7th | B^, Cv |
28 | teh | 988.235 | 988.293 | 989.414 | 1047.529 | 1047.591 | 1048.779 | 1264.941 (4F0.F0F16) | 1265.015 (4F1.03E16) | 1266.45 (4F2.73316) | 16/9, 30/17 | m7 | minor 7th | C | |
29 | te | 1023.529 | 1,023.589 | 1024.75 | 1084.941 | 1085.005 | 1086.235 | 1310.118 (51E.1E116) | 1310.194 (51E.31C16) | 1311.68 (51F.AE216) | 9/5 | 20/11 | ^m7 | upminor 7th | C^ |
30 | tu | 1058.8235 | 1,058.885 | 1060.086 | 1122.353 | 1122.419 | 1123.692 | 1355.294 (54B.4B416) | 1355.373 (54B.5F916) | 1356.911 (54C.E9116) | 24/13 | 13/7, 11/6 | ~7 | mid 7th | C^^ |
31 | ti | 1094.118 | 1,094.182 | 1095.423 | 1149.765 | 1159.8325 | 1161.148 | 1400.471 (578.787816) | 1400.5525 (578.8D716) | 1402.141 (57A.24116) | 32/17, 17/9, 15/8 | 28/15 | vM7 | downmajor 7th | C#v |
32 | taa | 1129.412 | 1,129.478 | 1130.759 | 1197.1765 | 1197.2465 | 1198.604 | 1445.647 (5A5.A5A16) | 1445.732 (5A5.BB516) | 1447.371 (5A7.5F116) | 48/25, 625/324 | M7 | major 7th | C# | |
33 | da | 1164.706 | 1,164.774 | 1166.095 | 1234.588 | 1234.66 | 1236.061 | 1490.8235 (5D2.D2D16) | 1490.911 (5D2.E9216) | 1492.602 (5D4.9A116) | 125/64, 100/51 | 49/25, 96/49 | ^M7, v8 | upmajor 7th, down 8ve | C#^, Dv |
34 | do | 1200.000 | 1,200.07 | 1201.431 | 1272 | 1272.074 | 1273.52 | 1536 (60016) | 1536.09 (600.1716) | 1537.832 (601.D56F) | 2/1 | P8 | 8ve | D |
Chords can be named using ups and downs as C upminor, D downmajor seven, etc. See Ups and Downs Notation - Chord names in other EDOs.
Selected just intervals by error
The following table shows how some prominent just intervals are represented in 34edo (ordered by absolute error).
Best direct mapping, even if inconsistent
Interval, complement | Error (abs., in cents) |
---|---|
15/13, 26/15 | 0.682 |
18/13, 13/9 | 1.324 |
5/4, 8/5 | 1.922 |
6/5, 5/3 | 2.006 |
13/12, 24/13 | 2.604 |
4/3, 3/2 | 3.927 |
13/10, 20/13 | 4.610 |
11/9, 18/11 | 5.533 |
16/15, 15/8 | 5.849 |
10/9, 9/5 | 5.933 |
14/11, 11/7 | 6.021 |
16/13, 13/8 | 6.531 |
13/11, 22/13 | 6.857 |
15/11, 22/15 | 7.539 |
9/8, 16/9 | 7.855 |
12/11, 11/6 | 9.461 |
11/10, 20/11 | 11.466 |
9/7, 14/9 | 11.555 |
14/13, 13/7 | 12.878 |
11/8, 16/11 | 13.388 |
15/14, 28/15 | 13.560 |
7/6, 12/7 | 15.482 |
8/7, 7/4 | 15.885 |
7/5, 10/7 | 17.488 |
Patent val mapping
Interval, complement | Error (abs., in cents) |
---|---|
15/13, 26/15 | 0.682 |
18/13, 13/9 | 1.324 |
5/4, 8/5 | 1.922 |
6/5, 5/3 | 2.006 |
13/12, 24/13 | 2.604 |
4/3, 3/2 | 3.927 |
13/10, 20/13 | 4.610 |
11/9, 18/11 | 5.533 |
16/15, 15/8 | 5.849 |
10/9, 9/5 | 5.933 |
16/13, 13/8 | 6.531 |
13/11, 22/13 | 6.857 |
15/11, 22/15 | 7.539 |
9/8, 16/9 | 7.855 |
12/11, 11/6 | 9.461 |
11/10, 20/11 | 11.466 |
11/8, 16/11 | 13.388 |
8/7, 7/4 | 15.885 |
7/5, 10/7 | 17.806 |
7/6, 12/7 | 19.812 |
15/14, 28/15 | 21.734 |
14/13, 13/7 | 22.416 |
9/7, 14/9 | 23.739 |
14/11, 11/7 | 29.273 |
Notations
The chain of fifths gives you the seven naturals, and their sharps and flats. The sharp or flat of a note is (what is commonly called) a neutral second away - the double-sharp means a minor third away from the natural. This has led certain "complainers", in seeking to notate 17 edo, to create an extra character to raise something a small step of which. To render this symbol philosophically harmonious with 34 tone equal temperament, a symbol indicating an adjustment of 1/34 up or down serves the purpose by using two of it, doubled laterally or vertically as composer. This however emphasizes certain aspects of 34edo which may not be most efficient expressions of some musical purposes. The reader can construct his own notation to the needs of the music and performer. As an example, a system with 15 "nominals" like A, B, C ... F, instead of seven, might be waste - of paper, or space, or memory if they aren't used consecutively frequently. The system spelled out here has familiarity as an advantage and disadvantage. The spacing of the nominals and lines is the same. Dense chords of certain types would be very impossible to notate. Finally, the table uses ^ and v for "up" and "down", but these might be reserved for adjustments of 1/68th of an octave, being hollow, and filled in triangles are recommended.
Commas
34-EDO tempers out the following commas. (Note: This assumes the val < 34 54 79 95 118 126 |.)
Rational | Monzo | Size (Cents) | Names |
---|---|---|---|
134217728/129140163 | | 27 -17 > | 66.765 | 17-comma |
20000/19683 | | 5 -9 4 > | 27.660 | Minimal Diesis, Tetracot Comma |
2048/2025 | | 11 -4 -2 > | 19.553 | Diaschisma |
393216/390625 | | 17 1 -8 > | 11.445 | Würschmidt comma |
15625/15552 | | -6 -5 6 > | 8.107 | Kleisma, Semicomma Majeur |
1212717/1210381 | | 23 6 -14 > | 3.338 | Vishnuzma, Semisuper |
1029/1000 | | -3 1 -3 3 > | 49.492 | Keega |
50/49 | | 1 0 2 -2 > | 34.976 | Jubilisma |
875/864 | | -5 -3 3 1 > | 21.902 | Keema |
126/125 | | 1 2 -3 1 > | 13.795 | Starling comma, Septimal semicomma |
100/99 | | 2 -2 2 0 -1> | 17.399 | Ptolemisma, Ptolemy's comma |
243/242 | | -1 5 0 0 -2 > | 7.139 | Rastma, Neutral third comma |
385/384 | | -7 -1 1 1 1 > | 4.503 | Keenanisma |
91/90 | | -1 -2 -1 1 0 1 > | 19.120 | Superleap |
Listen
- Ascension
- Uncomfortable In Crowds (extended) by Robin Perry
Links
- 34 Equal Guitar by Larry Hanson
- http://microstick.net/ websites of Neil Haverstick
- https://myspace.com/microstick