176edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
m Theory: update
ArrowHead294 (talk | contribs)
mNo edit summary
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
The '''176 equal divisions of the octave''' ('''176edo'''), or the '''176(-tone) equal temperament''' ('''176tet''', '''176et''') when viewed from a [[regular temperament]] perspective, is the [[EDO|equal division of the octave]] into 176 parts of about 6.82 [[cent]]s each, a size close to [[243/242]], the rastma.
{{EDO intro}}


== Theory ==
== Theory ==
176edo is [[consistent]] to the [[11-odd-limit]]. The equal temperament [[tempering out|tempers out]] 78732/78125 ([[sensipent comma]]) and {{monzo| 41 -20 -4 }} ([[undim comma]]) in the 5-limit; [[6144/6125]], [[10976/10935]], and [[50421/50000]] in the 7-limit; [[441/440]], [[3388/3375]], 6912/6875, [[8019/8000]], [[9801/9800]] and [[16384/16335]] in the 11-limit. Using the [[patent val]], [[351/350]], [[364/363]], [[2080/2079]], [[2197/2187]], and [[4096/4095]] in the 13-limit.  
176edo is [[consistent]] to the [[11-odd-limit]]. The equal temperament [[tempering out|tempers out]] 78732/78125 ([[sensipent comma]]) and {{monzo| 41 -20 -4 }} ([[undim comma]]) in the 5-limit; [[6144/6125]], [[10976/10935]], and [[50421/50000]] in the 7-limit; [[441/440]], [[3388/3375]], 6912/6875, [[8019/8000]], [[9801/9800]], and [[16384/16335]] in the 11-limit. Using the [[patent val]], [[351/350]], [[364/363]], [[2080/2079]], [[2197/2187]], and [[4096/4095]] in the 13-limit.  


176edo tempers the [[64/63|Archytas' comma]] to 1/44th of the octave (4 steps) and as a corollary supports the [[ruthenium]] temperament. It [[support]]s the [[bison]] temperament and the [[bicommatic]] temperament, and provides the [[optimal patent val]] for [[countermiracle]] in the 7- and 11-limit, and countermanna, one of the extensions, in the 13-limit.  
176edo tempers the [[64/63|Archytas' comma]] to 1/44th of the octave (4 steps) and as a corollary supports the [[ruthenium]] temperament. It [[support]]s the [[bison]] temperament and the [[bicommatic]] temperament, and provides the [[optimal patent val]] for [[countermiracle]] in the 7- and 11-limit, and countermanna, one of the extensions, in the 13-limit.  
Line 11: Line 11:


=== Subsets and supersets ===
=== Subsets and supersets ===
Since 176 factors into 2<sup>4</sup> × 11, 176edo has subset edos {{EDOs| 2, 4, 8, 11, 16, 22, 44, and 88 }}.
Since 176 factors into {{Factorisation|176}}, 176edo has subset edos {{EDOs| 2, 4, 8, 11, 16, 22, 44, and 88 }}.


== Regular temperament properties ==
== Regular temperament properties ==
Line 19: Line 19:
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br>8ve stretch (¢)
! rowspan="2" | Optimal<br />8ve stretch (¢)
! colspan="2" | Tuning error
! colspan="2" | Tuning error
|-
|-
Line 28: Line 28:
| {{monzo| 279 -176 }}
| {{monzo| 279 -176 }}
| {{mapping| 176 279 }}
| {{mapping| 176 279 }}
| &minus;0.100
| −0.100
| 0.100
| 0.100
| 1.47
| 1.47
Line 35: Line 35:
| 78732/78125, {{monzo| 41 -20 -4 }}
| 78732/78125, {{monzo| 41 -20 -4 }}
| {{mapping| 176 279 409 }}
| {{mapping| 176 279 409 }}
| &minus;0.400
| −0.400
| 0.432
| 0.432
| 6.34
| 6.34
Line 42: Line 42:
| 6144/6125, 10976/10935, 50421/50000
| 6144/6125, 10976/10935, 50421/50000
| {{mapping| 176 279 409 494 }}
| {{mapping| 176 279 409 494 }}
| &minus;0.243
| −0.243
| 0.463
| 0.463
| 6.79
| 6.79
Line 49: Line 49:
| 441/440, 3388/3375, 6144/6125, 8019/8000
| 441/440, 3388/3375, 6144/6125, 8019/8000
| {{mapping| 176 279 409 494 609 }}
| {{mapping| 176 279 409 494 609 }}
| &minus;0.250
| −0.250
| 0.414
| 0.414
| 6.08
| 6.08
Line 56: Line 56:
| 351/350, 364/363, 441/440, 2197/2187, 3146/3125
| 351/350, 364/363, 441/440, 2197/2187, 3146/3125
| {{mapping| 176 279 409 494 609 651 }}
| {{mapping| 176 279 409 494 609 651 }}
| &minus;0.123
| −0.123
| 0.473
| 0.473
| 6.93
| 6.93
Line 65: Line 65:
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
|-
|-
! Periods<br>per 8ve
! Periods<br />per 8ve
! Generator*
! Generator*
! Cents*
! Cents*
! Associated<br>ratio*
! Associated<br />ratio*
! Temperaments
! Temperaments
|-
|-
Line 114: Line 114:
|-
|-
| 4
| 4
| 73\176<br>(15\176)
| 73\176<br />(15\176)
| 497.73<br>(102.27)
| 497.73<br />(102.27)
| 4/3<br>(35/33)
| 4/3<br />(35/33)
| [[Undim]]
| [[Undim]]
|-
|-
| 8
| 8
| 73\176<br>(7\176)
| 73\176<br />(7\176)
| 497.73<br>(47.73)
| 497.73<br />(47.73)
| 4/3<br>(36/35)
| 4/3<br />(36/35)
| [[Twilight]]
| [[Twilight]]
|-
|-
| 8
| 8
| 83\176<br>(5\176)
| 83\176<br />(5\176)
| 565.91<br>(34.09)
| 565.91<br />(34.09)
| 168/121<br>(55/54)
| 168/121<br />(55/54)
| [[Octowerck]] (176f) / octowerckis (176)
| [[Octowerck]] (176f) / octowerckis (176)
|-
|-
| 11
| 11
| 73\176<br>(7\176)
| 73\176<br />(7\176)
| 497.73<br>(47.73)
| 497.73<br />(47.73)
| 4/3<br>(36/35)
| 4/3<br />(36/35)
| [[Hendecatonic]]
| [[Hendecatonic]]
|-
|-
| 22
| 22
| 73\176<br>(1\176)
| 73\176<br />(1\176)
| 497.73<br>(6.82)
| 497.73<br />(6.82)
| 4/3<br>(385/384)
| 4/3<br />(385/384)
| [[Icosidillic]] / [[major arcana]]
| [[Icosidillic]] / [[major arcana]]
|}
|}
<nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct
<nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct


[[Category:Countermiracle]]
[[Category:Countermiracle]]

Revision as of 14:50, 16 January 2025

← 175edo 176edo 177edo →
Prime factorization 24 × 11
Step size 6.81818 ¢ 
Fifth 103\176 (702.273 ¢)
Semitones (A1:m2) 17:13 (115.9 ¢ : 88.64 ¢)
Consistency limit 11
Distinct consistency limit 11

Template:EDO intro

Theory

176edo is consistent to the 11-odd-limit. The equal temperament tempers out 78732/78125 (sensipent comma) and [41 -20 -4 (undim comma) in the 5-limit; 6144/6125, 10976/10935, and 50421/50000 in the 7-limit; 441/440, 3388/3375, 6912/6875, 8019/8000, 9801/9800, and 16384/16335 in the 11-limit. Using the patent val, 351/350, 364/363, 2080/2079, 2197/2187, and 4096/4095 in the 13-limit.

176edo tempers the Archytas' comma to 1/44th of the octave (4 steps) and as a corollary supports the ruthenium temperament. It supports the bison temperament and the bicommatic temperament, and provides the optimal patent val for countermiracle in the 7- and 11-limit, and countermanna, one of the extensions, in the 13-limit.

Prime harmonics

Approximation of prime harmonics in 176edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 +0.32 +2.32 -0.64 +0.95 -1.89 -2.68 +2.49 -1.00 -0.03 +0.42
Relative (%) +0.0 +4.7 +34.1 -9.4 +14.0 -27.7 -39.3 +36.5 -14.7 -0.5 +6.1
Steps
(reduced)
176
(0)
279
(103)
409
(57)
494
(142)
609
(81)
651
(123)
719
(15)
748
(44)
796
(92)
855
(151)
872
(168)

Subsets and supersets

Since 176 factors into 24 × 11, 176edo has subset edos 2, 4, 8, 11, 16, 22, 44, and 88.

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [279 -176 [176 279]] −0.100 0.100 1.47
2.3.5 78732/78125, [41 -20 -4 [176 279 409]] −0.400 0.432 6.34
2.3.5.7 6144/6125, 10976/10935, 50421/50000 [176 279 409 494]] −0.243 0.463 6.79
2.3.5.7.11 441/440, 3388/3375, 6144/6125, 8019/8000 [176 279 409 494 609]] −0.250 0.414 6.08
2.3.5.7.11.13 351/350, 364/363, 441/440, 2197/2187, 3146/3125 [176 279 409 494 609 651]] −0.123 0.473 6.93

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
ratio*
Temperaments
1 17\176 115.91 77/72 Mercy / countermiracle / counterbenediction / countermanna
1 35\176 238.64 147/128 Tokko
1 65\176 443.18 162/125 Sensipent
1 73\176 497.73 4/3 Gary / cotoneum
1 83\176 565.91 13/9 Tricot / trident
2 23\176 20.45 81/80 Bicommatic
2 23\176 156.82 35/32 Bison
4 73\176
(15\176)
497.73
(102.27)
4/3
(35/33)
Undim
8 73\176
(7\176)
497.73
(47.73)
4/3
(36/35)
Twilight
8 83\176
(5\176)
565.91
(34.09)
168/121
(55/54)
Octowerck (176f) / octowerckis (176)
11 73\176
(7\176)
497.73
(47.73)
4/3
(36/35)
Hendecatonic
22 73\176
(1\176)
497.73
(6.82)
4/3
(385/384)
Icosidillic / major arcana

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct