56edo: Difference between revisions
→Regular temperament properties: cleanup |
ArrowHead294 (talk | contribs) mNo edit summary |
||
Line 11: | Line 11: | ||
=== Subsets and supersets === | === Subsets and supersets === | ||
Since 56 factors into 2<sup>3</sup> | Since 56 factors into {{nowrap|2<sup>3</sup> × 7}}, 56edo has subset edos {{EDOs| 2, 4, 7, 8, 14, 28 }}. | ||
One step of 56edo is the closest direct approximation to the syntonic comma, [[81/80]], with the unrounded value being 55.7976. Barium temperament realizes this proximity through regular temperament theory, and is supported by notable edos like [[224edo]], [[1848edo]], and [[2520edo]], which is a highly composite edo. | One step of 56edo is the closest direct approximation to the syntonic comma, [[81/80]], with the unrounded value being 55.7976. Barium temperament realizes this proximity through regular temperament theory, and is supported by notable edos like [[224edo]], [[1848edo]], and [[2520edo]], which is a highly composite edo. | ||
Line 17: | Line 17: | ||
== Intervals == | == Intervals == | ||
{| class="wikitable center-all right-2 left-3" | {| class="wikitable center-all right-2 left-3" | ||
! # | |- | ||
! # | |||
! Cents | ! Cents | ||
! Approximate Ratios | ! Approximate Ratios* | ||
! [[Ups and downs notation | ! [[Ups and downs notation]] | ||
|- | |- | ||
| 0 | | 0 | ||
Line 172: | Line 173: | ||
| … | | … | ||
|} | |} | ||
<nowiki>* | <nowiki />* The following table assumes the [[patent val]] {{val| 56 89 130 157 194 207 }}. Other approaches are possible. Inconsistent intervals are marked ''italic''. | ||
== Regular temperament properties == | == Regular temperament properties == | ||
{ | {{comma basis begin}} | ||
|- | |- | ||
| 2.3 | | 2.3 | ||
| {{monzo| 89 -56 }} | | {{monzo| 89 -56 }} | ||
| {{mapping| 56 89 }} | | {{mapping| 56 89 }} | ||
| | | −1.64 | ||
| 1.63 | | 1.63 | ||
| 7.64 | | 7.64 | ||
Line 195: | Line 188: | ||
| 2048/2025, 1953125/1889568 | | 2048/2025, 1953125/1889568 | ||
| {{mapping| 56 89 130 }} | | {{mapping| 56 89 130 }} | ||
| | | −1.01 | ||
| 1.61 | | 1.61 | ||
| 7.50 | | 7.50 | ||
Line 202: | Line 195: | ||
| 686/675, 875/864, 1029/1024 | | 686/675, 875/864, 1029/1024 | ||
| {{mapping| 56 89 130 157 }} | | {{mapping| 56 89 130 157 }} | ||
| | | −0.352 | ||
| 1.80 | | 1.80 | ||
| 8.38 | | 8.38 | ||
Line 209: | Line 202: | ||
| 100/99, 245/242, 385/384, 686/675 | | 100/99, 245/242, 385/384, 686/675 | ||
| {{mapping| 56 89 130 157 194 }} | | {{mapping| 56 89 130 157 194 }} | ||
| | | −0.618 | ||
| 1.69 | | 1.69 | ||
| 7.90 | | 7.90 | ||
Line 216: | Line 209: | ||
| 91/90, 100/99, 169/168, 245/242, 385/384 | | 91/90, 100/99, 169/168, 245/242, 385/384 | ||
| {{mapping| 56 89 130 157 194 207 }} | | {{mapping| 56 89 130 157 194 207 }} | ||
| | | −0.299 | ||
| 1.70 | | 1.70 | ||
| 7.95 | | 7.95 | ||
{{comma basis end}} | |||
=== Rank-2 temperaments === | === Rank-2 temperaments === | ||
{ | {{rank-2 begin}} | ||
|- | |- | ||
| 1 | | 1 | ||
Line 268: | Line 254: | ||
|- | |- | ||
| 2 | | 2 | ||
| 23\56<br>(5\56) | | 23\56<br />(5\56) | ||
| 492.86<br>(107.14) | | 492.86<br />(107.14) | ||
| 4/3<br>(17/16) | | 4/3<br />(17/16) | ||
| [[Keen]] / keenic | | [[Keen]] / keenic | ||
|- | |- | ||
| 4 | | 4 | ||
| 23\56<br>(5\56) | | 23\56<br />(5\56) | ||
| 492.86<br>(107.14) | | 492.86<br />(107.14) | ||
| 4/3<br>(17/16) | | 4/3<br />(17/16) | ||
| [[Bidia]] (7-limit) | | [[Bidia]] (7-limit) | ||
|- | |- | ||
| 7 | | 7 | ||
| 23\56<br>(1\56) | | 23\56<br />(1\56) | ||
| 492.86<br>(21.43) | | 492.86<br />(21.43) | ||
| 4/3<br>(250/243) | | 4/3<br />(250/243) | ||
| [[Sevond]] | | [[Sevond]] | ||
{{rank-2 end}} | |||
{{orf}} | |||
== Scales == | == Scales == | ||
Line 293: | Line 279: | ||
== Music == | == Music == | ||
; [[Claudi Meneghin]] | ; [[Claudi Meneghin]] | ||
* [https://www.youtube.com/watch?v=xWKa59qDkXQ ''Prelude & Fugue in Pajara''] (2020) | * [https://www.youtube.com/watch?v=xWKa59qDkXQ ''Prelude & Fugue in Pajara''] (2020) – in pajara, 56edo tuning | ||
* [https://www.youtube.com/watch?v=3oO1SIVWBgI ''Mirror Canon in F''] (2020) | * [https://www.youtube.com/watch?v=3oO1SIVWBgI ''Mirror Canon in F''] (2020) | ||
* [https://www.youtube.com/watch?v=s1h083BRWXU ''Canon 3-in-1 on a Ground''] (2020) | * [https://www.youtube.com/watch?v=s1h083BRWXU ''Canon 3-in-1 on a Ground''] (2020) | ||
Line 302: | Line 288: | ||
[[Category:Hemithirds]] | [[Category:Hemithirds]] | ||
[[Category:Keen]] | [[Category:Keen]] | ||
[[Category:Listen]] | |||
[[Category:Pajara]] | [[Category:Pajara]] | ||
[[Category:Superkleismic]] | [[Category:Superkleismic]] | ||
[[Category:Sycamore]] | [[Category:Sycamore]] | ||
Revision as of 05:58, 16 November 2024
← 55edo | 56edo | 57edo → |
Theory
56edo shares its near perfect quality of classical major third with 28edo, which it doubles, while also adding a superpythagorean 5th that is a convergent towards the bronze metallic mean, following 17edo and preceding 185edo. Because it contains 28edo's major third and also has a step size very close to the syntonic comma, 56edo contains very accurate approximations of both the classic major third 5/4 and the Pythagorean major third 81/64. Unfortunately, this "Pythagorean major third" is not the major third as is stacked by fifths in 56edo.
56edo can be used to tune hemithirds, superkleismic, sycamore and keen temperaments, and using ⟨56 89 130 158] (56d) as the equal temperament val, for pajara. It provides the optimal patent val for 7-, 11- and 13-limit sycamore, and the 11-limit 56d val is close to the POTE tuning for 11-limit pajara.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | +5.19 | -0.60 | -4.54 | +5.82 | -4.81 | +2.19 | +2.49 | -6.85 | -1.01 | -9.32 |
Relative (%) | +0.0 | +24.2 | -2.8 | -21.2 | +27.2 | -22.5 | +10.2 | +11.6 | -31.9 | -4.7 | -43.5 | |
Steps (reduced) |
56 (0) |
89 (33) |
130 (18) |
157 (45) |
194 (26) |
207 (39) |
229 (5) |
238 (14) |
253 (29) |
272 (48) |
277 (53) |
Subsets and supersets
Since 56 factors into 23 × 7, 56edo has subset edos 2, 4, 7, 8, 14, 28.
One step of 56edo is the closest direct approximation to the syntonic comma, 81/80, with the unrounded value being 55.7976. Barium temperament realizes this proximity through regular temperament theory, and is supported by notable edos like 224edo, 1848edo, and 2520edo, which is a highly composite edo.
Intervals
# | Cents | Approximate Ratios* | Ups and downs notation |
---|---|---|---|
0 | 0.000 | 1/1 | D |
1 | 21.429 | 49/48, 64/63 | ^D, vvE♭ |
2 | 42.857 | 28/27, 50/49, 81/80 | ^^D, vE♭ |
3 | 64.286 | 25/24, 36/35, 33/32 | ^3D, E♭ |
4 | 85.714 | 21/20, 22/21 | v3D♯, ^E♭ |
5 | 107.143 | 16/15 | vvD♯, ^^E♭ |
6 | 128.571 | 15/14, 13/12, 14/13 | vD♯, ^3E♭ |
7 | 150.000 | 12/11 | D♯, v3E |
8 | 171.429 | 10/9, 11/10 | ^D♯, vvE |
9 | 192.857 | 28/25 | ^^D♯, vE |
10 | 214.286 | 9/8 | E |
11 | 235.714 | 8/7 | ^E, vvF |
12 | 257.143 | 7/6, 15/13 | ^^E, vF |
13 | 278.571 | 75/64, 13/11 | F |
14 | 300.000 | 25/21 | ^F, vvG♭ |
15 | 321.429 | 6/5 | ^^F, vG♭ |
16 | 342.857 | 11/9, 39/32 | ^3F, G♭ |
17 | 364.286 | 27/22, 16/13, 26/21 | v3F♯, ^G♭ |
18 | 385.714 | 5/4 | vvF♯, ^^G♭ |
19 | 407.143 | 14/11 | vF♯, ^3G♭ |
20 | 428.571 | 32/25, 33/26 | F♯, v3G |
21 | 450.000 | 9/7, 13/10 | ^F♯, vvG |
22 | 471.429 | 21/16 | ^^F♯, vG |
23 | 492.857 | 4/3 | G |
24 | 514.286 | 35/26 | ^G, vvA♭ |
25 | 535.714 | 27/20, 15/11 | ^^G, vA♭ |
26 | 557.143 | 11/8 | ^3G, A♭ |
27 | 578.571 | 7/5 | v3G♯, ^A♭ |
28 | 600.000 | 45/32, 64/45 | vvG♯, ^^A♭ |
… | … | … | … |
* The following table assumes the patent val ⟨56 89 130 157 194 207]. Other approaches are possible. Inconsistent intervals are marked italic.
Regular temperament properties
Template:Comma basis begin |- | 2.3 | [89 -56⟩ | [⟨56 89]] | −1.64 | 1.63 | 7.64 |- | 2.3.5 | 2048/2025, 1953125/1889568 | [⟨56 89 130]] | −1.01 | 1.61 | 7.50 |- | 2.3.5.7 | 686/675, 875/864, 1029/1024 | [⟨56 89 130 157]] | −0.352 | 1.80 | 8.38 |- | 2.3.5.7.11 | 100/99, 245/242, 385/384, 686/675 | [⟨56 89 130 157 194]] | −0.618 | 1.69 | 7.90 |- | 2.3.5.7.11.13 | 91/90, 100/99, 169/168, 245/242, 385/384 | [⟨56 89 130 157 194 207]] | −0.299 | 1.70 | 7.95 Template:Comma basis end
Rank-2 temperaments
Template:Rank-2 begin
|-
| 1
| 3\56
| 64.29
| 25/24
| Sycamore
|-
| 1
| 9\56
| 192.86
| 28/25
| Hemithirds
|-
| 1
| 11\56
| 235.71
| 8/7
| Slendric
|-
| 1
| 15\56
| 321.43
| 6/5
| Superkleismic
|-
| 1
| 25\56
| 535.71
| 15/11
| Maquila (56d) / maquiloid (56)
|-
| 2
| 11\56
| 235.71
| 8/7
| Echidnic
|-
| 2
| 23\56
(5\56)
| 492.86
(107.14)
| 4/3
(17/16)
| Keen / keenic
|-
| 4
| 23\56
(5\56)
| 492.86
(107.14)
| 4/3
(17/16)
| Bidia (7-limit)
|-
| 7
| 23\56
(1\56)
| 492.86
(21.43)
| 4/3
(250/243)
| Sevond
Template:Rank-2 end
Template:Orf
Scales
Music
- Prelude & Fugue in Pajara (2020) – in pajara, 56edo tuning
- Mirror Canon in F (2020)
- Canon 3-in-1 on a Ground (2020)