444edo: Difference between revisions
Jump to navigation
Jump to search
Created page with "{{Infobox ET}} {{EDO intro|444}} == Theory == 444et is only consistent to the 5-limit. Using the patent val, it tempers out 67108864/66976875, 29360128/29296875 and 250047/..." |
Review |
||
Line 3: | Line 3: | ||
== Theory == | == Theory == | ||
444et is only consistent to the 5-limit. Using the patent val, | 444et is only [[consistent]] to the [[5-odd-limit]] since [[harmonic]] [[7/1|7]] is about halfway between its steps. Using the [[patent val]], the equal temperament [[tempering out|tempers out]] [[250047/250000]], 29360128/29296875, 67108864/66976875 and in the 7-limit; [[3025/3024]], [[5632/5625]], 42592/42525, 102487/102400, [[131072/130977]], 160083/160000, 172032/171875, 322102/321489, 391314/390625 and [[1771561/1769472]] in the 11-limit. It [[support]]s the [[magnesium]] temperament. | ||
=== Odd harmonics === | === Odd harmonics === | ||
Line 9: | Line 9: | ||
=== Subsets and supersets === | === Subsets and supersets === | ||
444 factors into | Since 444 factors into {{factorization|444}}, 444edo has subset edos {{EDOs| 2, 3, 4, 6, 12, 37, 74, 111, 148, and 222 }}. [[1332edo]], which triples it, gives a good correction to the harmonic 7. | ||
== Regular temperament properties == | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
! rowspan="2" |[[Subgroup]] | ! rowspan="2" | [[Subgroup]] | ||
! rowspan="2" |[[Comma list|Comma List]] | ! rowspan="2" | [[Comma list|Comma List]] | ||
! rowspan="2" |[[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
! rowspan="2" |Optimal<br>8ve Stretch (¢) | ! rowspan="2" | Optimal<br>8ve Stretch (¢) | ||
! colspan="2" |Tuning Error | ! colspan="2" | Tuning Error | ||
|- | |- | ||
![[TE error|Absolute]] (¢) | ! [[TE error|Absolute]] (¢) | ||
![[TE simple badness|Relative]] (%) | ! [[TE simple badness|Relative]] (%) | ||
|- | |- | ||
|2.3 | | 2.3 | ||
|{{monzo|176 -111}} | | {{monzo| 176 -111 }} | ||
|{{mapping|444 704}} | | {{mapping| 444 704 }} | ||
| -0.2359 | | -0.2359 | ||
| 0.2358 | | 0.2358 | ||
| 8.72 | | 8.72 | ||
|- | |- | ||
|2.3.5 | | 2.3.5 | ||
|{{monzo|41 -20 -4}}, {{monzo|-29 -11 20}} | | {{monzo| 41 -20 -4 }}, {{monzo| -29 -11 20 }} | ||
|{{mapping|444 704 1031}} | | {{mapping| 444 704 1031 }} | ||
| -0.1821 | | -0.1821 | ||
| 0.2071 | | 0.2071 | ||
Line 41: | Line 41: | ||
|+Table of rank-2 temperaments by generator | |+Table of rank-2 temperaments by generator | ||
! Periods<br>per 8ve | ! Periods<br>per 8ve | ||
! Generator | ! Generator* | ||
! Cents | ! Cents* | ||
! Associated<br>Ratio* | ! Associated<br>Ratio* | ||
! Temperaments | ! Temperaments | ||
|- | |- | ||
|1 | | 1 | ||
|13\444 | | 13\444 | ||
|35.14 | | 35.14 | ||
|1990656/1953125 | | 1990656/1953125 | ||
|[[Gammic]] | | [[Gammic]] (5-limit) | ||
|- | |- | ||
|4 | | 4 | ||
|184\444<br>(38\444) | | 184\444<br>(38\444) | ||
|497.30<br>(102.70) | | 497.30<br>(102.70) | ||
|4/3<br>(35/33) | | 4/3<br>(35/33) | ||
|[[Undim]] | | [[Undim]] | ||
|} | |} | ||
<nowiki>*</nowiki> [[Normal lists|octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct | <nowiki>*</nowiki> [[Normal lists|octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct |
Revision as of 15:22, 13 December 2023
← 443edo | 444edo | 445edo → |
Theory
444et is only consistent to the 5-odd-limit since harmonic 7 is about halfway between its steps. Using the patent val, the equal temperament tempers out 250047/250000, 29360128/29296875, 67108864/66976875 and in the 7-limit; 3025/3024, 5632/5625, 42592/42525, 102487/102400, 131072/130977, 160083/160000, 172032/171875, 322102/321489, 391314/390625 and 1771561/1769472 in the 11-limit. It supports the magnesium temperament.
Odd harmonics
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.75 | +0.17 | -1.26 | -1.21 | +0.03 | +0.01 | +0.92 | +0.45 | -0.22 | -0.51 | -1.25 |
Relative (%) | +27.7 | +6.4 | -46.6 | -44.7 | +1.2 | +0.5 | +34.1 | +16.6 | -8.0 | -18.9 | -46.2 | |
Steps (reduced) |
704 (260) |
1031 (143) |
1246 (358) |
1407 (75) |
1536 (204) |
1643 (311) |
1735 (403) |
1815 (39) |
1886 (110) |
1950 (174) |
2008 (232) |
Subsets and supersets
Since 444 factors into 22 × 3 × 37, 444edo has subset edos 2, 3, 4, 6, 12, 37, 74, 111, 148, and 222. 1332edo, which triples it, gives a good correction to the harmonic 7.
Regular temperament properties
Subgroup | Comma List | Mapping | Optimal 8ve Stretch (¢) |
Tuning Error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [176 -111⟩ | [⟨444 704]] | -0.2359 | 0.2358 | 8.72 |
2.3.5 | [41 -20 -4⟩, [-29 -11 20⟩ | [⟨444 704 1031]] | -0.1821 | 0.2071 | 7.66 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated Ratio* |
Temperaments |
---|---|---|---|---|
1 | 13\444 | 35.14 | 1990656/1953125 | Gammic (5-limit) |
4 | 184\444 (38\444) |
497.30 (102.70) |
4/3 (35/33) |
Undim |
* octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct