443edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 442edo443edo444edo →
Prime factorization 443 (prime)
Step size 2.7088¢
Fifth 259\443 (701.58¢)
Semitones (A1:m2) 41:34 (111.1¢ : 92.1¢)
Consistency limit 3
Distinct consistency limit 3

443 equal divisions of the octave (443edo), or 443-tone equal temperament (443tet), 443 equal temperament (443et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 443 equal parts of about 2.71 ¢ each.

Theory

443et tempers out 67108864/66976875, 6144/6125 and 32805/32768 in the 7-limit; 806736/805255, 35156250/35153041, 759375/758912, 131072/130977, 540/539, 184549376/184528125, 5632/5625, 8019/8000, 160083/160000, 391314/390625, 202397184/201768035, 3294225/3294172 and 20614528/20588575 in the 11-limit.

Prime harmonics

Approximation of prime harmonics in 443edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error absolute (¢) +0.00 -0.37 +1.05 +0.93 +1.28 -0.80 +0.69 +0.46 +0.17 -0.23 +0.79
relative (%) +0 -14 +39 +34 +47 -29 +25 +17 +6 -9 +29
Steps
(reduced)
443
(0)
702
(259)
1029
(143)
1244
(358)
1533
(204)
1639
(310)
1811
(39)
1882
(110)
2004
(232)
2152
(380)
2195
(423)

Subsets and supersets

443edo is the 86th prime edo. 886edo, which doubles it, gives a good correction until the 11-limit.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [-702 443 443 702] 0.1183 0.1183 4.37

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator
(reduced)
Cents
(reduced)
Associated
ratio
Temperaments
1 92\443 249.21 81/70 Hemischis (7-limit)

Music