414edo: Difference between revisions
mNo edit summary |
Adopt template: EDO intro; cleanup; +subsets and supersets |
||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{EDO intro|414}} | |||
== Theory == | == Theory == | ||
414edo is closely related to [[207edo]], but the [[patent val]]s differ on the mapping for 5. It is [[consistent]] to the [[17-odd-limit]], tempering out {{monzo| -36 11 8 }} (submajor comma) and {{monzo|1 -27 18}} ([[ennealimma]]) in the 5-limit; [[2401/2400]], [[4375/4374]], and {{monzo| -37 4 12 1 }} in the 7-limit; [[3025/3024]], [[9801/9800]], [[41503/41472]], and 1265625/1261568 in the 11-limit; [[625/624]], [[729/728]], [[1575/1573]], [[2200/2197]], and 26411/26364 in the 13-limit; [[833/832]], [[1089/1088]], [[1225/1224]], 1275/1274, and [[1701/1700]] in the 17-limit. It [[support]]s the 11-limit [[hemiennealimmal]] and the 13-limit [[quatracot]]. | 414edo is closely related to [[207edo]], but the [[patent val]]s differ on the mapping for [[harmonic]] [[5/1|5]]. It is [[consistent]] to the [[17-odd-limit]] with a flat tendency for most of the harmonics, making for a good full 17-limit system. The equal temperament [[tempering out|tempers out]] {{monzo| -36 11 8 }} (submajor comma) and {{monzo| 1 -27 18 }} ([[ennealimma]]) in the 5-limit; [[2401/2400]], [[4375/4374]], and {{monzo| -37 4 12 1 }} in the 7-limit; [[3025/3024]], [[9801/9800]], [[41503/41472]], and 1265625/1261568 in the 11-limit; [[625/624]], [[729/728]], [[1575/1573]], [[2200/2197]], and 26411/26364 in the 13-limit; [[833/832]], [[1089/1088]], [[1225/1224]], [[1275/1274]], and [[1701/1700]] in the 17-limit. It [[support]]s the 11-limit [[hemiennealimmal]] and the 13-limit [[quatracot]]. | ||
=== Prime harmonics === | === Prime harmonics === | ||
{{Harmonics in equal|414}} | {{Harmonics in equal|414}} | ||
=== Subsets and supersets === | |||
Since 414 factors into {{factorization|414}}, 414edo has subset edos {{EDOs| 2, 3, 6, 9, 18, 23, 46, 69, 138, and 207 }}. | |||
== Regular temperament properties == | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
! rowspan="2" | Subgroup | ! rowspan="2" | [Subgroup]] | ||
! rowspan="2" | [[Comma list]] | ! rowspan="2" | [[Comma list|Comma List]] | ||
! rowspan="2" | [[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
! rowspan="2" | Optimal<br>8ve | ! rowspan="2" | Optimal<br>8ve Stretch (¢) | ||
! colspan="2" | Tuning | ! colspan="2" | Tuning Error | ||
|- | |- | ||
! [[TE error|Absolute]] (¢) | ! [[TE error|Absolute]] (¢) | ||
Line 21: | Line 24: | ||
| 2.3.5 | | 2.3.5 | ||
| {{monzo| -36 11 8 }}, {{monzo| 1 -27 18 }} | | {{monzo| -36 11 8 }}, {{monzo| 1 -27 18 }} | ||
| | | {{mapping| 414 656 961 }} | ||
| +0.2222 | | +0.2222 | ||
| 0.1575 | | 0.1575 | ||
Line 28: | Line 31: | ||
| 2.3.5.7 | | 2.3.5.7 | ||
| 2401/2400, 4375/4374, {{monzo| -36 11 8 }} | | 2401/2400, 4375/4374, {{monzo| -36 11 8 }} | ||
| | | {{mapping| 414 656 961 1162 }} | ||
| +0.2299 | | +0.2299 | ||
| 0.1371 | | 0.1371 | ||
Line 35: | Line 38: | ||
| 2.3.5.7.11 | | 2.3.5.7.11 | ||
| 2401/2400, 3025/3024, 4375/4374, 1366875/1362944 | | 2401/2400, 3025/3024, 4375/4374, 1366875/1362944 | ||
| | | {{mapping| 414 656 961 1162 1432 }} | ||
| +0.2182 | | +0.2182 | ||
| 0.1248 | | 0.1248 | ||
Line 42: | Line 45: | ||
| 2.3.5.7.11.13 | | 2.3.5.7.11.13 | ||
| 625/624, 729/728, 1575/1573, 2200/2197, 2401/2400 | | 625/624, 729/728, 1575/1573, 2200/2197, 2401/2400 | ||
| | | {{mapping| 414 656 961 1162 1432 1532 }} | ||
| +0.1795 | | +0.1795 | ||
| 0.1431 | | 0.1431 | ||
Line 49: | Line 52: | ||
| 2.3.5.7.11.13.17 | | 2.3.5.7.11.13.17 | ||
| 625/624, 729/728, 833/832, 1089/1088, 1225/1224, 2200/2197 | | 625/624, 729/728, 833/832, 1089/1088, 1225/1224, 2200/2197 | ||
| | | {{mapping| 414 656 961 1162 1432 1532 1692 }} | ||
| +0.1751 | | +0.1751 | ||
| 0.1329 | | 0.1329 | ||
Line 58: | Line 61: | ||
{| class="wikitable center-all left-5" | {| class="wikitable center-all left-5" | ||
|+Table of rank-2 temperaments by generator | |+Table of rank-2 temperaments by generator | ||
! Periods<br>per | ! Periods<br>per 8ve | ||
! Generator | ! Generator* | ||
! Cents | ! Cents* | ||
! Associated<br> | ! Associated<br>Ratio* | ||
! Temperaments | ! Temperaments | ||
|- | |- | ||
Line 94: | Line 97: | ||
| [[Semihemiennealimmal]] | | [[Semihemiennealimmal]] | ||
|} | |} | ||
<nowiki>*</nowiki> [[Normal lists|octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct | |||
[[ |
Revision as of 14:43, 6 November 2023
← 413edo | 414edo | 415edo → |
Theory
414edo is closely related to 207edo, but the patent vals differ on the mapping for harmonic 5. It is consistent to the 17-odd-limit with a flat tendency for most of the harmonics, making for a good full 17-limit system. The equal temperament tempers out [-36 11 8⟩ (submajor comma) and [1 -27 18⟩ (ennealimma) in the 5-limit; 2401/2400, 4375/4374, and [-37 4 12 1⟩ in the 7-limit; 3025/3024, 9801/9800, 41503/41472, and 1265625/1261568 in the 11-limit; 625/624, 729/728, 1575/1573, 2200/2197, and 26411/26364 in the 13-limit; 833/832, 1089/1088, 1225/1224, 1275/1274, and 1701/1700 in the 17-limit. It supports the 11-limit hemiennealimmal and the 13-limit quatracot.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | -0.51 | -0.81 | -0.71 | -0.59 | +0.05 | -0.61 | +1.04 | +0.71 | -0.59 | -0.11 |
Relative (%) | +0.0 | -17.4 | -27.8 | -24.5 | -20.5 | +1.8 | -21.0 | +35.8 | +24.5 | -20.4 | -3.7 | |
Steps (reduced) |
414 (0) |
656 (242) |
961 (133) |
1162 (334) |
1432 (190) |
1532 (290) |
1692 (36) |
1759 (103) |
1873 (217) |
2011 (355) |
2051 (395) |
Subsets and supersets
Since 414 factors into 2 × 32 × 23, 414edo has subset edos 2, 3, 6, 9, 18, 23, 46, 69, 138, and 207.
Regular temperament properties
[Subgroup]] | Comma List | Mapping | Optimal 8ve Stretch (¢) |
Tuning Error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3.5 | [-36 11 8⟩, [1 -27 18⟩ | [⟨414 656 961]] | +0.2222 | 0.1575 | 5.43 |
2.3.5.7 | 2401/2400, 4375/4374, [-36 11 8⟩ | [⟨414 656 961 1162]] | +0.2299 | 0.1371 | 4.73 |
2.3.5.7.11 | 2401/2400, 3025/3024, 4375/4374, 1366875/1362944 | [⟨414 656 961 1162 1432]] | +0.2182 | 0.1248 | 4.30 |
2.3.5.7.11.13 | 625/624, 729/728, 1575/1573, 2200/2197, 2401/2400 | [⟨414 656 961 1162 1432 1532]] | +0.1795 | 0.1431 | 4.94 |
2.3.5.7.11.13.17 | 625/624, 729/728, 833/832, 1089/1088, 1225/1224, 2200/2197 | [⟨414 656 961 1162 1432 1532 1692]] | +0.1751 | 0.1329 | 4.58 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated Ratio* |
Temperaments |
---|---|---|---|---|
1 | 125\414 | 362.31 | 10125/8192 | Submajor (5-limit) |
2 | 61\414 | 176.81 | 195/176 | Quatracot |
9 | 109\414 (17\414) |
315.94 (49.28) |
6/5 (36/35) |
Ennealimmal |
18 | 86\414 (6\414) |
249.28 (17.39) |
231/200 (99/98) |
Hemiennealimmal |
18 | 164\414 (3\414) |
475.36 (8.70) |
1053/800 (1287/1280) |
Semihemiennealimmal |
* octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct