285edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Expansion
Cleanup
Line 3: Line 3:


== Theory ==
== Theory ==
285edo has a sharp tendency. It tempers out the [[misty comma]] and the [[enneadeca]] in the 5-limit; [[3136/3125]] and [[5120/5103]] in the 7-limit; [[3025/3024]] and [[3388/3375]] in the 11-limit; [[352/351]], [[676/675]], [[847/845]], [[1001/1000]], and [[2080/2079]] in the 13-limit. It supports the 13-limit [[hemimist]] temperament.  
285edo has a sharp tendency. The equal temperament [[tempering out|tempers out]] the [[misty comma]] and the [[enneadeca]] in the 5-limit; [[3136/3125]] and [[5120/5103]] in the 7-limit; [[3025/3024]] and [[3388/3375]] in the 11-limit; [[352/351]], [[676/675]], [[847/845]], [[1001/1000]], and [[2080/2079]] in the 13-limit. It supports the 13-limit [[hemimist]] temperament.  


=== Prime harmonics ===
=== Prime harmonics ===
{{Harmonics in equal|285}}
{{Harmonics in equal|285|intervals=prime}}


=== Subsets and supersets ===
=== Subsets and supersets ===
Line 24: Line 24:
| 2.3
| 2.3
| {{monzo| 452 -285 }}
| {{monzo| 452 -285 }}
| [{{val| 285 452 }}]
| {{mapping| 285 452 }}
| -0.3795
| -0.3795
| 0.3794
| 0.3794
Line 31: Line 31:
| 2.3.5
| 2.3.5
| 67108864/66430125, {{monzo| -14 -19 19 }}
| 67108864/66430125, {{monzo| -14 -19 19 }}
| [{{val| 285 452 662 }}]
| {{mapping| 285 452 662 }}
| -0.4043
| -0.4043
| 0.3117
| 0.3117
Line 38: Line 38:
| 2.3.5.7
| 2.3.5.7
| 3136/3125, 5120/5103, 40353607/39858075
| 3136/3125, 5120/5103, 40353607/39858075
| [{{val| 285 452 662 800 }}]
| {{mapping| 285 452 662 800 }}
| -0.2673
| -0.2673
| 0.3596
| 0.3596
Line 45: Line 45:
| 2.3.5.7.11
| 2.3.5.7.11
| 3025/3024, 3136/3125, 5120/5103, 12005/11979
| 3025/3024, 3136/3125, 5120/5103, 12005/11979
| [{{val| 285 452 662 800 986 }}]
| {{mapping| 285 452 662 800 986 }}
| -0.2289
| -0.2289
| 0.3307
| 0.3307
Line 52: Line 52:
| 2.3.5.7.11.13
| 2.3.5.7.11.13
| 352/351, 676/675, 847/845, 3025/3024, 12005/11979
| 352/351, 676/675, 847/845, 3025/3024, 12005/11979
| [{{val| 285 452 662 800 986 1055 }}]
| {{mapping| 285 452 662 800 986 1055 }}
| -0.2618
| -0.2618
| 0.3107
| 0.3107
Line 62: Line 62:
|+Table of rank-2 temperaments by generator
|+Table of rank-2 temperaments by generator
! Periods<br>per 8ve
! Periods<br>per 8ve
! Generator<br>(Reduced)
! Generator*
! Cents<br>(Reduced)
! Cents*
! Associated<br>Ratio
! Associated<br>Ratio*
! Temperaments
! Temperaments
|-
|-
Line 91: Line 91:
| [[Enneadecal]] (5-limit)
| [[Enneadecal]] (5-limit)
|}
|}
<nowiki>*</nowiki> [[Normal lists|octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct

Revision as of 05:20, 8 March 2024

← 284edo 285edo 286edo →
Prime factorization 3 × 5 × 19
Step size 4.21053 ¢ 
Fifth 167\285 (703.158 ¢)
Semitones (A1:m2) 29:20 (122.1 ¢ : 84.21 ¢)
Consistency limit 7
Distinct consistency limit 7

Template:EDO intro

Theory

285edo has a sharp tendency. The equal temperament tempers out the misty comma and the enneadeca in the 5-limit; 3136/3125 and 5120/5103 in the 7-limit; 3025/3024 and 3388/3375 in the 11-limit; 352/351, 676/675, 847/845, 1001/1000, and 2080/2079 in the 13-limit. It supports the 13-limit hemimist temperament.

Prime harmonics

Approximation of prime harmonics in 285edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 +1.20 +1.05 -0.40 +0.26 +1.58 +0.31 +1.43 -0.91 +2.00 +0.23
Relative (%) +0.0 +28.6 +25.0 -9.6 +6.2 +37.5 +7.3 +34.1 -21.5 +47.5 +5.4
Steps
(reduced)
285
(0)
452
(167)
662
(92)
800
(230)
986
(131)
1055
(200)
1165
(25)
1211
(71)
1289
(149)
1385
(245)
1412
(272)

Subsets and supersets

Since 285 factors into 3 × 5 × 19, 285edo has subset edos 3, 5, 15, 19, 57, and 95.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [452 -285 [285 452]] -0.3795 0.3794 9.01
2.3.5 67108864/66430125, [-14 -19 19 [285 452 662]] -0.4043 0.3117 7.41
2.3.5.7 3136/3125, 5120/5103, 40353607/39858075 [285 452 662 800]] -0.2673 0.3596 8.54
2.3.5.7.11 3025/3024, 3136/3125, 5120/5103, 12005/11979 [285 452 662 800 986]] -0.2289 0.3307 7.85
2.3.5.7.11.13 352/351, 676/675, 847/845, 3025/3024, 12005/11979 [285 452 662 800 986 1055]] -0.2618 0.3107 7.38

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
Ratio*
Temperaments
1 109\285 458.95 125/96 Majvam
3 59\285
(36\285)
248.42
(151.58)
15/13
(12/11)
Hemimist
3 59\285
(23\285)
496.84
(96.84)
4/3
(256/243)
Misty
19 118\285
(2\285)
496.84
(8.42)
4/3
(15625/15552)
Enneadecal (5-limit)

* octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct