414edo: Difference between revisions
+RTT table and rank-2 temperaments |
ArrowHead294 (talk | contribs) mNo edit summary |
||
(13 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | |||
{{ED intro}} | |||
414edo is closely related to [[207edo]], but the [[patent val]]s differ on the mapping for | == Theory == | ||
414edo is [[consistent]] to the [[17-odd-limit]] with a flat tendency for most of the [[harmonic]]s, making for a good full [[17-limit]] system. It is closely related to [[207edo]], but the [[patent val]]s differ on the mapping for [[harmonic]] [[5/1|5]]. It [[tempering out|tempers out]] {{monzo| -36 11 8 }} (submajor comma) and {{monzo| 1 -27 18 }} ([[ennealimma]]) in the 5-limit; [[2401/2400]], [[4375/4374]], and {{monzo| -37 4 12 1 }} in the 7-limit; [[3025/3024]], [[9801/9800]], [[41503/41472]], and 1265625/1261568 in the 11-limit; [[625/624]], [[729/728]], [[1575/1573]], [[2200/2197]], and 26411/26364 in the 13-limit; [[833/832]], [[1089/1088]], [[1225/1224]], [[1275/1274]], and [[1701/1700]] in the 17-limit. It [[support]]s the 11-limit [[hemiennealimmal]] and the 13-limit [[quatracot]]. | |||
=== Prime harmonics === | === Prime harmonics === | ||
{{Harmonics in equal|414}} | {{Harmonics in equal|414}} | ||
=== Subsets and supersets === | |||
Since 414 factors into 2 × 3<sup>2</sup> × 23, 414edo has subset edos {{EDOs| 2, 3, 6, 9, 18, 23, 46, 69, 138, and 207 }}. | |||
== Regular temperament properties == | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
! rowspan="2" | Subgroup | |- | ||
! rowspan="2" | [[Subgroup]] | |||
! rowspan="2" | [[Comma list]] | ! rowspan="2" | [[Comma list]] | ||
! rowspan="2" | [[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
! rowspan="2" | Optimal<br>8ve stretch (¢) | ! rowspan="2" | Optimal<br />8ve stretch (¢) | ||
! colspan="2" | Tuning error | ! colspan="2" | Tuning error | ||
|- | |- | ||
Line 19: | Line 25: | ||
| 2.3.5 | | 2.3.5 | ||
| {{monzo| -36 11 8 }}, {{monzo| 1 -27 18 }} | | {{monzo| -36 11 8 }}, {{monzo| 1 -27 18 }} | ||
| | | {{mapping| 414 656 961 }} | ||
| +0.2222 | | +0.2222 | ||
| 0.1575 | | 0.1575 | ||
Line 26: | Line 32: | ||
| 2.3.5.7 | | 2.3.5.7 | ||
| 2401/2400, 4375/4374, {{monzo| -36 11 8 }} | | 2401/2400, 4375/4374, {{monzo| -36 11 8 }} | ||
| | | {{mapping| 414 656 961 1162 }} | ||
| +0.2299 | | +0.2299 | ||
| 0.1371 | | 0.1371 | ||
Line 33: | Line 39: | ||
| 2.3.5.7.11 | | 2.3.5.7.11 | ||
| 2401/2400, 3025/3024, 4375/4374, 1366875/1362944 | | 2401/2400, 3025/3024, 4375/4374, 1366875/1362944 | ||
| | | {{mapping| 414 656 961 1162 1432 }} | ||
| +0.2182 | | +0.2182 | ||
| 0.1248 | | 0.1248 | ||
Line 40: | Line 46: | ||
| 2.3.5.7.11.13 | | 2.3.5.7.11.13 | ||
| 625/624, 729/728, 1575/1573, 2200/2197, 2401/2400 | | 625/624, 729/728, 1575/1573, 2200/2197, 2401/2400 | ||
| | | {{mapping| 414 656 961 1162 1432 1532 }} | ||
| +0.1795 | | +0.1795 | ||
| 0.1431 | | 0.1431 | ||
Line 47: | Line 53: | ||
| 2.3.5.7.11.13.17 | | 2.3.5.7.11.13.17 | ||
| 625/624, 729/728, 833/832, 1089/1088, 1225/1224, 2200/2197 | | 625/624, 729/728, 833/832, 1089/1088, 1225/1224, 2200/2197 | ||
| | | {{mapping| 414 656 961 1162 1432 1532 1692 }} | ||
| +0.1751 | | +0.1751 | ||
| 0.1329 | | 0.1329 | ||
Line 55: | Line 61: | ||
=== Rank-2 temperaments === | === Rank-2 temperaments === | ||
{| class="wikitable center-all left-5" | {| class="wikitable center-all left-5" | ||
|+Table of rank-2 temperaments by generator | |+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | ||
! Periods<br>per | |- | ||
! Generator | ! Periods<br />per 8ve | ||
! Cents | ! Generator* | ||
! Associated<br>ratio | ! Cents* | ||
! Associated<br />ratio* | |||
! Temperaments | ! Temperaments | ||
|- | |- | ||
Line 92: | Line 99: | ||
| [[Semihemiennealimmal]] | | [[Semihemiennealimmal]] | ||
|} | |} | ||
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct | |||
== Music == | |||
; [[No Clue Music]] | |||
* [https://www.youtube.com/watch?v=j6KPW-Hr1sI ''DISconnectioN''] (2024) | |||
[[Category: | [[Category:Listen]] |
Latest revision as of 22:44, 20 February 2025
← 413edo | 414edo | 415edo → |
414 equal divisions of the octave (abbreviated 414edo or 414ed2), also called 414-tone equal temperament (414tet) or 414 equal temperament (414et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 414 equal parts of about 2.9 ¢ each. Each step represents a frequency ratio of 21/414, or the 414th root of 2.
Theory
414edo is consistent to the 17-odd-limit with a flat tendency for most of the harmonics, making for a good full 17-limit system. It is closely related to 207edo, but the patent vals differ on the mapping for harmonic 5. It tempers out [-36 11 8⟩ (submajor comma) and [1 -27 18⟩ (ennealimma) in the 5-limit; 2401/2400, 4375/4374, and [-37 4 12 1⟩ in the 7-limit; 3025/3024, 9801/9800, 41503/41472, and 1265625/1261568 in the 11-limit; 625/624, 729/728, 1575/1573, 2200/2197, and 26411/26364 in the 13-limit; 833/832, 1089/1088, 1225/1224, 1275/1274, and 1701/1700 in the 17-limit. It supports the 11-limit hemiennealimmal and the 13-limit quatracot.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | -0.51 | -0.81 | -0.71 | -0.59 | +0.05 | -0.61 | +1.04 | +0.71 | -0.59 | -0.11 |
Relative (%) | +0.0 | -17.4 | -27.8 | -24.5 | -20.5 | +1.8 | -21.0 | +35.8 | +24.5 | -20.4 | -3.7 | |
Steps (reduced) |
414 (0) |
656 (242) |
961 (133) |
1162 (334) |
1432 (190) |
1532 (290) |
1692 (36) |
1759 (103) |
1873 (217) |
2011 (355) |
2051 (395) |
Subsets and supersets
Since 414 factors into 2 × 32 × 23, 414edo has subset edos 2, 3, 6, 9, 18, 23, 46, 69, 138, and 207.
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3.5 | [-36 11 8⟩, [1 -27 18⟩ | [⟨414 656 961]] | +0.2222 | 0.1575 | 5.43 |
2.3.5.7 | 2401/2400, 4375/4374, [-36 11 8⟩ | [⟨414 656 961 1162]] | +0.2299 | 0.1371 | 4.73 |
2.3.5.7.11 | 2401/2400, 3025/3024, 4375/4374, 1366875/1362944 | [⟨414 656 961 1162 1432]] | +0.2182 | 0.1248 | 4.30 |
2.3.5.7.11.13 | 625/624, 729/728, 1575/1573, 2200/2197, 2401/2400 | [⟨414 656 961 1162 1432 1532]] | +0.1795 | 0.1431 | 4.94 |
2.3.5.7.11.13.17 | 625/624, 729/728, 833/832, 1089/1088, 1225/1224, 2200/2197 | [⟨414 656 961 1162 1432 1532 1692]] | +0.1751 | 0.1329 | 4.58 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperaments |
---|---|---|---|---|
1 | 125\414 | 362.31 | 10125/8192 | Submajor (5-limit) |
2 | 61\414 | 176.81 | 195/176 | Quatracot |
9 | 109\414 (17\414) |
315.94 (49.28) |
6/5 (36/35) |
Ennealimmal |
18 | 86\414 (6\414) |
249.28 (17.39) |
231/200 (99/98) |
Hemiennealimmal |
18 | 164\414 (3\414) |
475.36 (8.70) |
1053/800 (1287/1280) |
Semihemiennealimmal |
* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct
Music
- DISconnectioN (2024)