414edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
+RTT table and rank-2 temperaments
ArrowHead294 (talk | contribs)
mNo edit summary
 
(13 intermediate revisions by 6 users not shown)
Line 1: Line 1:
'''414edo''' is the [[EDO|equal division of the octave]] into 414 parts of 2.89855 [[cent]]s each.
{{Infobox ET}}
{{ED intro}}


414edo is closely related to [[207edo]], but the [[patent val]]s differ on the mapping for 5. It is [[consistent]] to the [[17-odd-limit]], tempering out {{monzo| -36 11 8 }} (submajor comma) and {{monzo|1 -27 18}} ([[ennealimma]]) in the 5-limit; [[2401/2400]], [[4375/4374]], and {{monzo| -37 4 12 1 }} in the 7-limit; [[3025/3024]], [[9801/9800]], [[41503/41472]], and 1265625/1261568 in the 11-limit; [[625/624]], [[729/728]], [[1575/1573]], [[2200/2197]], and 26411/26364 in the 13-limit; [[833/832]], [[1089/1088]], [[1225/1224]], 1275/1274, and [[1701/1700]] in the 17-limit. It [[support]]s the 11-limit [[Ragismic microtemperaments|hemiennealimmal]] and the 13-limit [[Ragismic microtemperaments|quatracot]].
== Theory ==
414edo is [[consistent]] to the [[17-odd-limit]] with a flat tendency for most of the [[harmonic]]s, making for a good full [[17-limit]] system. It is closely related to [[207edo]], but the [[patent val]]s differ on the mapping for [[harmonic]] [[5/1|5]]. It [[tempering out|tempers out]] {{monzo| -36 11 8 }} (submajor comma) and {{monzo| 1 -27 18 }} ([[ennealimma]]) in the 5-limit; [[2401/2400]], [[4375/4374]], and {{monzo| -37 4 12 1 }} in the 7-limit; [[3025/3024]], [[9801/9800]], [[41503/41472]], and 1265625/1261568 in the 11-limit; [[625/624]], [[729/728]], [[1575/1573]], [[2200/2197]], and 26411/26364 in the 13-limit; [[833/832]], [[1089/1088]], [[1225/1224]], [[1275/1274]], and [[1701/1700]] in the 17-limit. It [[support]]s the 11-limit [[hemiennealimmal]] and the 13-limit [[quatracot]].


=== Prime harmonics ===
=== Prime harmonics ===
{{Harmonics in equal|414}}
{{Harmonics in equal|414}}
=== Subsets and supersets ===
Since 414 factors into 2 × 3<sup>2</sup> × 23, 414edo has subset edos {{EDOs| 2, 3, 6, 9, 18, 23, 46, 69, 138, and 207 }}.


== Regular temperament properties ==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" | Subgroup
|-
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br>8ve stretch (¢)
! rowspan="2" | Optimal<br />8ve stretch (¢)
! colspan="2" | Tuning error
! colspan="2" | Tuning error
|-
|-
Line 19: Line 25:
| 2.3.5
| 2.3.5
| {{monzo| -36 11 8 }}, {{monzo| 1 -27 18 }}
| {{monzo| -36 11 8 }}, {{monzo| 1 -27 18 }}
| [{{val| 414 656 961 }}]
| {{mapping| 414 656 961 }}
| +0.2222
| +0.2222
| 0.1575
| 0.1575
Line 26: Line 32:
| 2.3.5.7
| 2.3.5.7
| 2401/2400, 4375/4374, {{monzo| -36 11 8 }}
| 2401/2400, 4375/4374, {{monzo| -36 11 8 }}
| [{{val| 414 656 961 1162 }}]
| {{mapping| 414 656 961 1162 }}
| +0.2299
| +0.2299
| 0.1371
| 0.1371
Line 33: Line 39:
| 2.3.5.7.11
| 2.3.5.7.11
| 2401/2400, 3025/3024, 4375/4374, 1366875/1362944
| 2401/2400, 3025/3024, 4375/4374, 1366875/1362944
| [{{val| 414 656 961 1162 1432 }}]
| {{mapping| 414 656 961 1162 1432 }}
| +0.2182
| +0.2182
| 0.1248
| 0.1248
Line 40: Line 46:
| 2.3.5.7.11.13
| 2.3.5.7.11.13
| 625/624, 729/728, 1575/1573, 2200/2197, 2401/2400
| 625/624, 729/728, 1575/1573, 2200/2197, 2401/2400
| [{{val| 414 656 961 1162 1432 1532 }}]
| {{mapping| 414 656 961 1162 1432 1532 }}
| +0.1795
| +0.1795
| 0.1431
| 0.1431
Line 47: Line 53:
| 2.3.5.7.11.13.17
| 2.3.5.7.11.13.17
| 625/624, 729/728, 833/832, 1089/1088, 1225/1224, 2200/2197
| 625/624, 729/728, 833/832, 1089/1088, 1225/1224, 2200/2197
| [{{val| 414 656 961 1162 1432 1532 1692 }}]
| {{mapping| 414 656 961 1162 1432 1532 1692 }}
| +0.1751
| +0.1751
| 0.1329
| 0.1329
Line 55: Line 61:
=== Rank-2 temperaments ===
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
{| class="wikitable center-all left-5"
|+Table of rank-2 temperaments by generator
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
! Periods<br>per octave
|-
! Generator<br>(reduced)
! Periods<br />per 8ve
! Cents<br>(reduced)
! Generator*
! Associated<br>ratio
! Cents*
! Associated<br />ratio*
! Temperaments
! Temperaments
|-
|-
Line 92: Line 99:
| [[Semihemiennealimmal]]
| [[Semihemiennealimmal]]
|}
|}
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct
== Music ==
; [[No Clue Music]]
* [https://www.youtube.com/watch?v=j6KPW-Hr1sI ''DISconnectioN''] (2024)


[[Category:Equal divisions of the octave]]
[[Category:Listen]]

Latest revision as of 22:44, 20 February 2025

← 413edo 414edo 415edo →
Prime factorization 2 × 32 × 23
Step size 2.89855 ¢ 
Fifth 242\414 (701.449 ¢) (→ 121\207)
Semitones (A1:m2) 38:32 (110.1 ¢ : 92.75 ¢)
Consistency limit 17
Distinct consistency limit 17

414 equal divisions of the octave (abbreviated 414edo or 414ed2), also called 414-tone equal temperament (414tet) or 414 equal temperament (414et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 414 equal parts of about 2.9 ¢ each. Each step represents a frequency ratio of 21/414, or the 414th root of 2.

Theory

414edo is consistent to the 17-odd-limit with a flat tendency for most of the harmonics, making for a good full 17-limit system. It is closely related to 207edo, but the patent vals differ on the mapping for harmonic 5. It tempers out [-36 11 8 (submajor comma) and [1 -27 18 (ennealimma) in the 5-limit; 2401/2400, 4375/4374, and [-37 4 12 1 in the 7-limit; 3025/3024, 9801/9800, 41503/41472, and 1265625/1261568 in the 11-limit; 625/624, 729/728, 1575/1573, 2200/2197, and 26411/26364 in the 13-limit; 833/832, 1089/1088, 1225/1224, 1275/1274, and 1701/1700 in the 17-limit. It supports the 11-limit hemiennealimmal and the 13-limit quatracot.

Prime harmonics

Approximation of prime harmonics in 414edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 -0.51 -0.81 -0.71 -0.59 +0.05 -0.61 +1.04 +0.71 -0.59 -0.11
Relative (%) +0.0 -17.4 -27.8 -24.5 -20.5 +1.8 -21.0 +35.8 +24.5 -20.4 -3.7
Steps
(reduced)
414
(0)
656
(242)
961
(133)
1162
(334)
1432
(190)
1532
(290)
1692
(36)
1759
(103)
1873
(217)
2011
(355)
2051
(395)

Subsets and supersets

Since 414 factors into 2 × 32 × 23, 414edo has subset edos 2, 3, 6, 9, 18, 23, 46, 69, 138, and 207.

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3.5 [-36 11 8, [1 -27 18 [414 656 961]] +0.2222 0.1575 5.43
2.3.5.7 2401/2400, 4375/4374, [-36 11 8 [414 656 961 1162]] +0.2299 0.1371 4.73
2.3.5.7.11 2401/2400, 3025/3024, 4375/4374, 1366875/1362944 [414 656 961 1162 1432]] +0.2182 0.1248 4.30
2.3.5.7.11.13 625/624, 729/728, 1575/1573, 2200/2197, 2401/2400 [414 656 961 1162 1432 1532]] +0.1795 0.1431 4.94
2.3.5.7.11.13.17 625/624, 729/728, 833/832, 1089/1088, 1225/1224, 2200/2197 [414 656 961 1162 1432 1532 1692]] +0.1751 0.1329 4.58

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
ratio*
Temperaments
1 125\414 362.31 10125/8192 Submajor (5-limit)
2 61\414 176.81 195/176 Quatracot
9 109\414
(17\414)
315.94
(49.28)
6/5
(36/35)
Ennealimmal
18 86\414
(6\414)
249.28
(17.39)
231/200
(99/98)
Hemiennealimmal
18 164\414
(3\414)
475.36
(8.70)
1053/800
(1287/1280)
Semihemiennealimmal

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct

Music

No Clue Music