34zpi: Difference between revisions
Jump to navigation
Jump to search
Contribution (talk | contribs) |
m Text replacement - "Ups and Downs Notation" to "Ups and downs notation" |
||
(19 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
'''34 zeta peak index''' (abbreviated '''34zpi'''), is the [[Equal-step tuning|equal-step]] [[tuning system]] obtained from the 34th [[Zeta peak index|peak]] of the [[The Riemann zeta function and tuning|Riemann zeta function]]. | '''34 zeta peak index''' (abbreviated '''34zpi'''), is the [[Equal-step tuning|equal-step]] [[tuning system]] obtained from the 34th [[Zeta peak index|peak]] of the [[The Riemann zeta function and tuning|Riemann zeta function]]. | ||
{ | {{ZPI | ||
| zpi = 34 | |||
| steps = 12.0231830072926 | |||
| step size = 99.8071807833375 | |||
| height = 5.193290 | |||
| integral = 1.269599 | |||
| gap = 15.899282 | |||
| edo = 12edo | |||
| octave = 1197.68616940005 | |||
| consistent = 10 | |||
| distinct = 6 | |||
}} | |||
|99.8071807833375 | |||
|5.193290 | |||
|1.269599 | |||
|15.899282 | |||
| | |||
|1197.68616940005 | |||
|10 | |||
|6 | |||
== Intervals == | == Intervals == | ||
{| class="wikitable center-1 right-2 left-3 center-4" | {| class="wikitable center-1 right-2 left-3 center-4" | ||
|+ style="font-size: 105%; white-space: nowrap;" | Intervals in 34zpi | |||
|- | |- | ||
| colspan="3" style="text-align:left;" | JI ratios are comprised of 16-integer-limit ratios,<br>and are stylized as follows to indicate their accuracy: | |||
| colspan="3" style="text-align:left;" | JI ratios are comprised of 16-integer limit ratios,<br>and are stylized as follows to indicate their accuracy: | |||
* '''<u>Bold Underlined:</u>''' relative error < 8.333 % | * '''<u>Bold Underlined:</u>''' relative error < 8.333 % | ||
* '''Bold:''' relative error < 16.667 % | * '''Bold:''' relative error < 16.667 % | ||
Line 42: | Line 25: | ||
* <small><small>Small Small:</small></small> relative error < 41.667 % | * <small><small>Small Small:</small></small> relative error < 41.667 % | ||
* <small><small><small>Small Small Small:</small></small></small> relative error < 50 % | * <small><small><small>Small Small Small:</small></small></small> relative error < 50 % | ||
| style="text-align:right;" | <center>''' | | style="text-align:right;" | <center>'''⟨12 19]'''</center><br>[[9/8|Whole tone]] = 2 steps<br>[[256/243|Limma]] = 1 step<br>[[2187/2048|Apotome]] = 1 step | ||
|- | |- | ||
! Degree | ! Degree | ||
! Cents | ! Cents | ||
! Ratios | ! Ratios | ||
! Ups and | ! Ups and downs notation | ||
|- | |- | ||
| 0 | | 0 | ||
Line 296: | Line 279: | ||
== Approximation to JI == | == Approximation to JI == | ||
=== Interval mappings === | |||
The following tables show how 16-integer-limit intervals are represented in 34zpi. Prime harmonics are in '''bold'''; inconsistent intervals are in ''italics''. | |||
{| class="wikitable center-1 right-2 right-3 mw-collapsible mw-collapsed" | {| class="wikitable center-1 right-2 right-3 mw-collapsible mw-collapsed" | ||
|+ style="white-space: nowrap;" | | |+ style="white-space: nowrap;" | 16-integer-limit intervals in 34zpi (by direct approximation) | ||
|- | |- | ||
! Ratio | ! Ratio | ||
Line 305: | Line 292: | ||
|- | |- | ||
| [[4/3]] | | [[4/3]] | ||
| | | +0.991 | ||
| | | +0.993 | ||
|- | |- | ||
| [[8/3]] | | [[8/3]] | ||
| | | -1.323 | ||
| | | -1.325 | ||
|- | |- | ||
| [[16/9]] | | [[16/9]] | ||
| | | +1.982 | ||
| | | +1.986 | ||
|- | |- | ||
| '''[[2/1]]''' | | '''[[2/1]]''' | ||
| ''' | | '''-2.314''' | ||
| ''' | | '''-2.318''' | ||
|- | |- | ||
| [[15/1]] | | [[15/1]] | ||
| | | +2.669 | ||
| | | +2.674 | ||
|- | |- | ||
| [[3/2]] | | [[3/2]] | ||
| | | -3.305 | ||
| | | -3.311 | ||
|- | |- | ||
| [[16/3]] | | [[16/3]] | ||
| | | -3.637 | ||
| | | -3.644 | ||
|- | |- | ||
| [[9/8]] | | [[9/8]] | ||
| | | -4.296 | ||
| | | -4.304 | ||
|- | |- | ||
| [[4/1]] | | [[4/1]] | ||
| | | -4.628 | ||
| | | -4.637 | ||
|- | |- | ||
| [[15/2]] | | [[15/2]] | ||
| | | +4.983 | ||
| | | +4.992 | ||
|- | |- | ||
| '''[[3/1]]''' | | '''[[3/1]]''' | ||
| ''' | | '''-5.619''' | ||
| ''' | | '''-5.629''' | ||
|- | |- | ||
| [[10/1]] | | [[10/1]] | ||
| | | +5.974 | ||
| | | +5.985 | ||
|- | |- | ||
| [[9/4]] | | [[9/4]] | ||
| | | -6.609 | ||
| | | -6.622 | ||
|- | |- | ||
| [[8/1]] | | [[8/1]] | ||
| | | -6.941 | ||
| | | -6.955 | ||
|- | |- | ||
| [[15/4]] | | [[15/4]] | ||
| | | +7.296 | ||
| | | +7.311 | ||
|- | |- | ||
| [[6/1]] | | [[6/1]] | ||
| | | -7.932 | ||
| | | -7.948 | ||
|- | |- | ||
| '''[[5/1]]''' | | '''[[5/1]]''' | ||
| ''' | | '''+8.287''' | ||
| ''' | | '''+8.303''' | ||
|- | |- | ||
| [[9/2]] | | [[9/2]] | ||
| | | -8.923 | ||
| | | -8.941 | ||
|- | |- | ||
| [[16/1]] | | [[16/1]] | ||
| | | -9.255 | ||
| | | -9.273 | ||
|- | |- | ||
| [[15/8]] | | [[15/8]] | ||
| | | +9.610 | ||
| | | +9.629 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[13/11]]'' | | ''[[13/11]]'' | ||
| '' | | ''+10.212'' | ||
| '' | | ''+10.232'' | ||
|- | |- | ||
| [[12/1]] | | [[12/1]] | ||
| | | -10.246 | ||
| | | -10.266 | ||
|- | |- | ||
| [[5/2]] | | [[5/2]] | ||
| | | +10.601 | ||
| | | +10.622 | ||
|- | |- | ||
| [[9/1]] | | [[9/1]] | ||
| | | -11.237 | ||
| | | -11.259 | ||
|- | |- | ||
| [[10/3]] | | [[10/3]] | ||
| | | +11.592 | ||
| | | +11.614 | ||
|- | |- | ||
| [[16/15]] | | [[16/15]] | ||
| | | -11.924 | ||
| | | -11.947 | ||
|- | |- | ||
| [[5/4]] | | [[5/4]] | ||
| | | +12.915 | ||
| | | +12.940 | ||
|- | |- | ||
| [[5/3]] | | [[5/3]] | ||
| | | +13.906 | ||
| | | +13.933 | ||
|- | |- | ||
| [[14/5]] | | [[14/5]] | ||
| | | +14.017 | ||
| | | +14.044 | ||
|- | |- | ||
| [[8/5]] | | [[8/5]] | ||
| | | -15.229 | ||
| | | -15.258 | ||
|- | |- | ||
| [[11/7]] | | [[11/7]] | ||
| | | +15.965 | ||
| | | +15.996 | ||
|- | |- | ||
| [[6/5]] | | [[6/5]] | ||
| | | -16.220 | ||
| | | -16.251 | ||
|- | |- | ||
| [[7/5]] | | [[7/5]] | ||
| | | +16.331 | ||
| | | +16.362 | ||
|- | |- | ||
| [[10/9]] | | [[10/9]] | ||
| | | +17.211 | ||
| | | +17.244 | ||
|- | |- | ||
| [[16/5]] | | [[16/5]] | ||
| | | -17.543 | ||
| | | -17.577 | ||
|- | |- | ||
| [[14/11]] | | [[14/11]] | ||
| | | -18.279 | ||
| | | -18.315 | ||
|- | |- | ||
| [[12/5]] | | [[12/5]] | ||
| | | -18.534 | ||
| | | -18.569 | ||
|- | |- | ||
| [[10/7]] | | [[10/7]] | ||
| | | -18.645 | ||
| | | -18.681 | ||
|- | |- | ||
| [[9/5]] | | [[9/5]] | ||
| | | -19.524 | ||
| | | -19.562 | ||
|- | |- | ||
| [[15/14]] | | [[15/14]] | ||
| | | -19.636 | ||
| | | -19.674 | ||
|- | |- | ||
| [[15/7]] | | [[15/7]] | ||
| | | -21.949 | ||
| | | -21.992 | ||
|- | |- | ||
| [[14/1]] | | [[14/1]] | ||
| | | +22.304 | ||
| | | +22.347 | ||
|- | |- | ||
| '''[[7/1]]''' | | '''[[7/1]]''' | ||
| ''' | | '''+24.618''' | ||
| ''' | | '''+24.666''' | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[13/7]]'' | | ''[[13/7]]'' | ||
| '' | | ''+26.177'' | ||
| '' | | ''+26.228'' | ||
|- | |- | ||
| [[7/2]] | | [[7/2]] | ||
| | | +26.932 | ||
| | | +26.984 | ||
|- | |- | ||
| [[14/3]] | | [[14/3]] | ||
| | | +27.923 | ||
| | | +27.977 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[14/13]]'' | | ''[[14/13]]'' | ||
| '' | | ''-28.491'' | ||
| '' | | ''-28.546'' | ||
|- | |- | ||
| [[7/4]] | | [[7/4]] | ||
| | | +29.246 | ||
| | | +29.302 | ||
|- | |- | ||
| [[7/3]] | | [[7/3]] | ||
| | | +30.237 | ||
| | | +30.295 | ||
|- | |- | ||
| [[8/7]] | | [[8/7]] | ||
| | | -31.560 | ||
| | | -31.621 | ||
|- | |- | ||
| [[11/5]] | | [[11/5]] | ||
| | | +32.296 | ||
| | | +32.359 | ||
|- | |- | ||
| [[7/6]] | | [[7/6]] | ||
| | | +32.551 | ||
| | | +32.614 | ||
|- | |- | ||
| [[14/9]] | | [[14/9]] | ||
| | | +33.542 | ||
| | | +33.606 | ||
|- | |- | ||
| [[16/7]] | | [[16/7]] | ||
| | | -33.874 | ||
| | | -33.939 | ||
|- | |- | ||
| [[11/10]] | | [[11/10]] | ||
| | | +34.610 | ||
| | | +34.677 | ||
|- | |- | ||
| [[12/7]] | | [[12/7]] | ||
| | | -34.864 | ||
| | | -34.932 | ||
|- | |- | ||
| [[9/7]] | | [[9/7]] | ||
| | | -35.855 | ||
| | | -35.925 | ||
|- | |- | ||
| [[13/9]] | | [[13/9]] | ||
| | | -37.775 | ||
| | | -37.848 | ||
|- | |- | ||
| [[15/11]] | | [[15/11]] | ||
| | | -37.915 | ||
| | | -37.988 | ||
|- | |- | ||
| [[13/12]] | | [[13/12]] | ||
| | | -38.765 | ||
| | | -38.840 | ||
|- | |- | ||
| [[16/13]] | | [[16/13]] | ||
| | | +39.756 | ||
| | | +39.833 | ||
|- | |- | ||
| '''[[11/1]]''' | | '''[[11/1]]''' | ||
| ''' | | '''+40.584''' | ||
| ''' | | '''+40.662''' | ||
|- | |- | ||
| [[13/6]] | | [[13/6]] | ||
| | | -41.079 | ||
| | | -41.159 | ||
|- | |- | ||
| [[13/8]] | | [[13/8]] | ||
| | | -42.070 | ||
| | | -42.151 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[13/5]]'' | | ''[[13/5]]'' | ||
| '' | | ''+42.508'' | ||
| '' | | ''+42.590'' | ||
|- | |- | ||
| [[11/2]] | | [[11/2]] | ||
| | | +42.897 | ||
| | | +42.980 | ||
|- | |- | ||
| [[13/3]] | | [[13/3]] | ||
| | | -43.393 | ||
| | | -43.477 | ||
|- | |- | ||
| [[13/4]] | | [[13/4]] | ||
| | | -44.384 | ||
| | | -44.470 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[13/10]]'' | | ''[[13/10]]'' | ||
| '' | | ''+44.822'' | ||
| '' | | ''+44.909'' | ||
|- | |- | ||
| [[11/4]] | | [[11/4]] | ||
| | | +45.211 | ||
| | | +45.299 | ||
|- | |- | ||
| [[11/3]] | | [[11/3]] | ||
| | | +46.202 | ||
| | | +46.291 | ||
|- | |- | ||
| [[13/2]] | | [[13/2]] | ||
| | | -46.698 | ||
| | | -46.788 | ||
|- | |- | ||
| [[11/8]] | | [[11/8]] | ||
| | | +47.525 | ||
| | | +47.617 | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[11/9]]'' | | ''[[11/9]]'' | ||
| '' | | ''-47.986'' | ||
| '' | | ''-48.079'' | ||
|- | |- style="background-color: #cccccc;" | ||
| ''[[15/13]]'' | | ''[[15/13]]'' | ||
| '' | | ''-48.127'' | ||
| '' | | ''-48.220'' | ||
|- | |- | ||
| [[11/6]] | | [[11/6]] | ||
| | | +48.516 | ||
| -48. | | +48.610 | ||
|- style="background-color: #cccccc;" | |||
| ''[[12/11]]'' | |||
| ''+48.977'' | |||
| ''+49.072'' | |||
|- | |||
| '''[[13/1]]''' | |||
| '''-49.012''' | |||
| '''-49.106''' | |||
|- | |||
| [[16/11]] | |||
| -49.839 | |||
| -49.935 | |||
|} | |||
{| class="wikitable center-1 right-2 right-3 mw-collapsible mw-collapsed" | |||
|+ style="white-space: nowrap;" | 16-integer-limit intervals in 34zpi (by patent val mapping) | |||
|- | |||
! Ratio | |||
! Error (abs, [[Cent|¢]]) | |||
! Error (rel, [[Relative cent|%]]) | |||
|- | |||
| [[4/3]] | |||
| +0.991 | |||
| +0.993 | |||
|- | |||
| [[8/3]] | |||
| -1.323 | |||
| -1.325 | |||
|- | |||
| [[16/9]] | |||
| +1.982 | |||
| +1.986 | |||
|- | |||
| '''[[2/1]]''' | |||
| '''-2.314''' | |||
| '''-2.318''' | |||
|- | |||
| [[15/1]] | |||
| +2.669 | |||
| +2.674 | |||
|- | |||
| [[3/2]] | |||
| -3.305 | |||
| -3.311 | |||
|- | |||
| [[16/3]] | |||
| -3.637 | |||
| -3.644 | |||
|- | |||
| [[9/8]] | |||
| -4.296 | |||
| -4.304 | |||
|- | |||
| [[4/1]] | |||
| -4.628 | |||
| -4.637 | |||
|- | |||
| [[15/2]] | |||
| +4.983 | |||
| +4.992 | |||
|- | |||
| '''[[3/1]]''' | |||
| '''-5.619''' | |||
| '''-5.629''' | |||
|- | |||
| [[10/1]] | |||
| +5.974 | |||
| +5.985 | |||
|- | |||
| [[9/4]] | |||
| -6.609 | |||
| -6.622 | |||
|- | |||
| [[8/1]] | |||
| -6.941 | |||
| -6.955 | |||
|- | |||
| [[15/4]] | |||
| +7.296 | |||
| +7.311 | |||
|- | |||
| [[6/1]] | |||
| -7.932 | |||
| -7.948 | |||
|- | |||
| '''[[5/1]]''' | |||
| '''+8.287''' | |||
| '''+8.303''' | |||
|- | |- | ||
| ''[[12/11]]'' | | [[9/2]] | ||
| '' | | -8.923 | ||
| '' | | -8.941 | ||
|- | |||
| [[16/1]] | |||
| -9.255 | |||
| -9.273 | |||
|- | |||
| [[15/8]] | |||
| +9.610 | |||
| +9.629 | |||
|- | |||
| [[12/1]] | |||
| -10.246 | |||
| -10.266 | |||
|- | |||
| [[5/2]] | |||
| +10.601 | |||
| +10.622 | |||
|- | |||
| [[9/1]] | |||
| -11.237 | |||
| -11.259 | |||
|- | |||
| [[10/3]] | |||
| +11.592 | |||
| +11.614 | |||
|- | |||
| [[16/15]] | |||
| -11.924 | |||
| -11.947 | |||
|- | |||
| [[5/4]] | |||
| +12.915 | |||
| +12.940 | |||
|- | |||
| [[5/3]] | |||
| +13.906 | |||
| +13.933 | |||
|- | |||
| [[14/5]] | |||
| +14.017 | |||
| +14.044 | |||
|- | |||
| [[8/5]] | |||
| -15.229 | |||
| -15.258 | |||
|- | |||
| [[11/7]] | |||
| +15.965 | |||
| +15.996 | |||
|- | |||
| [[6/5]] | |||
| -16.220 | |||
| -16.251 | |||
|- | |||
| [[7/5]] | |||
| +16.331 | |||
| +16.362 | |||
|- | |||
| [[10/9]] | |||
| +17.211 | |||
| +17.244 | |||
|- | |||
| [[16/5]] | |||
| -17.543 | |||
| -17.577 | |||
|- | |||
| [[14/11]] | |||
| -18.279 | |||
| -18.315 | |||
|- | |||
| [[12/5]] | |||
| -18.534 | |||
| -18.569 | |||
|- | |||
| [[10/7]] | |||
| -18.645 | |||
| -18.681 | |||
|- | |||
| [[9/5]] | |||
| -19.524 | |||
| -19.562 | |||
|- | |||
| [[15/14]] | |||
| -19.636 | |||
| -19.674 | |||
|- | |||
| [[15/7]] | |||
| -21.949 | |||
| -21.992 | |||
|- | |||
| [[14/1]] | |||
| +22.304 | |||
| +22.347 | |||
|- | |||
| '''[[7/1]]''' | |||
| '''+24.618''' | |||
| '''+24.666''' | |||
|- | |||
| [[7/2]] | |||
| +26.932 | |||
| +26.984 | |||
|- | |||
| [[14/3]] | |||
| +27.923 | |||
| +27.977 | |||
|- | |||
| [[7/4]] | |||
| +29.246 | |||
| +29.302 | |||
|- | |||
| [[7/3]] | |||
| +30.237 | |||
| +30.295 | |||
|- | |||
| [[8/7]] | |||
| -31.560 | |||
| -31.621 | |||
|- | |||
| [[11/5]] | |||
| +32.296 | |||
| +32.359 | |||
|- | |||
| [[7/6]] | |||
| +32.551 | |||
| +32.614 | |||
|- | |||
| [[14/9]] | |||
| +33.542 | |||
| +33.606 | |||
|- | |||
| [[16/7]] | |||
| -33.874 | |||
| -33.939 | |||
|- | |||
| [[11/10]] | |||
| +34.610 | |||
| +34.677 | |||
|- | |||
| [[12/7]] | |||
| -34.864 | |||
| -34.932 | |||
|- | |||
| [[9/7]] | |||
| -35.855 | |||
| -35.925 | |||
|- | |||
| [[13/9]] | |||
| -37.775 | |||
| -37.848 | |||
|- | |||
| [[15/11]] | |||
| -37.915 | |||
| -37.988 | |||
|- | |||
| [[13/12]] | |||
| -38.765 | |||
| -38.840 | |||
|- | |||
| [[16/13]] | |||
| +39.756 | |||
| +39.833 | |||
|- | |||
| '''[[11/1]]''' | |||
| '''+40.584''' | |||
| '''+40.662''' | |||
|- | |||
| [[13/6]] | |||
| -41.079 | |||
| -41.159 | |||
|- | |||
| [[13/8]] | |||
| -42.070 | |||
| -42.151 | |||
|- | |||
| [[11/2]] | |||
| +42.897 | |||
| +42.980 | |||
|- | |||
| [[13/3]] | |||
| -43.393 | |||
| -43.477 | |||
|- | |||
| [[13/4]] | |||
| -44.384 | |||
| -44.470 | |||
|- | |||
| [[11/4]] | |||
| +45.211 | |||
| +45.299 | |||
|- | |||
| [[11/3]] | |||
| +46.202 | |||
| +46.291 | |||
|- | |||
| [[13/2]] | |||
| -46.698 | |||
| -46.788 | |||
|- | |||
| [[11/8]] | |||
| +47.525 | |||
| +47.617 | |||
|- | |||
| [[11/6]] | |||
| +48.516 | |||
| +48.610 | |||
|- | |- | ||
| '''[[13/1]]''' | | '''[[13/1]]''' | ||
| ''' | | '''-49.012''' | ||
| ''' | | '''-49.106''' | ||
|- | |- | ||
| [[16/11]] | | [[16/11]] | ||
| | | -49.839 | ||
| | | -49.935 | ||
|- style="background-color: #cccccc;" | |||
| ''[[12/11]]'' | |||
| ''-50.830'' | |||
| ''-50.928'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[15/13]]'' | |||
| ''+51.680'' | |||
| ''+51.780'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[11/9]]'' | |||
| ''+51.821'' | |||
| ''+51.921'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/10]]'' | |||
| ''-54.985'' | |||
| ''-55.091'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/5]]'' | |||
| ''-57.299'' | |||
| ''-57.410'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[14/13]]'' | |||
| ''+71.316'' | |||
| ''+71.454'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/7]]'' | |||
| ''-73.630'' | |||
| ''-73.772'' | |||
|- style="background-color: #cccccc;" | |||
| ''[[13/11]]'' | |||
| ''-89.595'' | |||
| ''-89.768'' | |||
|} | |} | ||
Latest revision as of 01:07, 20 August 2025
34 zeta peak index (abbreviated 34zpi), is the equal-step tuning system obtained from the 34th peak of the Riemann zeta function.
Tuning | Strength | Closest edo | Integer limit | |||||||
---|---|---|---|---|---|---|---|---|---|---|
ZPI | Steps per 8ve |
Step size (cents) |
Height | Integral | Gap | Edo | Octave (cents) | Consistent | Distinct | |
Size | Stretch | |||||||||
34zpi | 12.023183 | 99.807181 | 5.19329 | 1.269599 | 15.899282 | 12edo | 1197.686169 | −2.313831 | 10 | 6 |
Intervals
JI ratios are comprised of 16-integer-limit ratios, and are stylized as follows to indicate their accuracy:
|
Whole tone = 2 steps Limma = 1 step Apotome = 1 step | ||
Degree | Cents | Ratios | Ups and downs notation |
---|---|---|---|
0 | 0.000 | P1 | |
1 | 99.807 | 16/15, 15/14, 14/13, 13/12 | m2 |
2 | 199.614 | 12/11, 11/10, 10/9, 9/8, 8/7, 15/13 | M2 |
3 | 299.422 | 7/6, 13/11, 6/5, 11/9 | m3 |
4 | 399.229 | 16/13, 5/4, 14/11, 9/7 | M3 |
5 | 499.036 | 13/10, 4/3, 15/11 | P4 |
6 | 598.843 | 11/8, 7/5, 10/7, 13/9, 16/11 | A4, d5 |
7 | 698.650 | 3/2 | P5 |
8 | 798.457 | 14/9, 11/7, 8/5, 13/8 | m6 |
9 | 898.265 | 5/3, 12/7 | M6 |
10 | 998.072 | 7/4, 16/9, 9/5 | m7 |
11 | 1097.879 | 11/6, 13/7, 15/8 | M7 |
12 | 1197.686 | 2/1 | P1 +1 oct |
13 | 1297.493 | 15/7, 13/6 | m2 +1 oct |
14 | 1397.301 | 11/5, 9/4, 16/7 | M2 +1 oct |
15 | 1497.108 | 7/3, 12/5 | m3 +1 oct |
16 | 1596.915 | 5/2 | M3 +1 oct |
17 | 1696.722 | 13/5, 8/3 | P4 +1 oct |
18 | 1796.529 | 11/4, 14/5 | A4 +1 oct, d5 +1 oct |
19 | 1896.336 | 3/1 | P5 +1 oct |
20 | 1996.144 | 16/5, 13/4 | m6 +1 oct |
21 | 2095.951 | 10/3 | M6 +1 oct |
22 | 2195.758 | 7/2 | m7 +1 oct |
23 | 2295.565 | 11/3, 15/4 | M7 +1 oct |
24 | 2395.372 | 4/1 | P1 +2 oct |
25 | 2495.180 | 13/3 | m2 +2 oct |
26 | 2594.987 | 9/2 | M2 +2 oct |
27 | 2694.794 | 14/3 | m3 +2 oct |
28 | 2794.601 | 5/1 | M3 +2 oct |
29 | 2894.408 | 16/3 | P4 +2 oct |
30 | 2994.215 | 11/2 | A4 +2 oct, d5 +2 oct |
31 | 3094.023 | 6/1 | P5 +2 oct |
32 | 3193.830 | 13/2 | m6 +2 oct |
33 | 3293.637 | M6 +2 oct | |
34 | 3393.444 | 7/1 | m7 +2 oct |
35 | 3493.251 | 15/2 | M7 +2 oct |
36 | 3593.059 | 8/1 | P1 +3 oct |
37 | 3692.866 | m2 +3 oct | |
38 | 3792.673 | 9/1 | M2 +3 oct |
39 | 3892.480 | m3 +3 oct | |
40 | 3992.287 | 10/1 | M3 +3 oct |
41 | 4092.094 | P4 +3 oct | |
42 | 4191.902 | 11/1 | A4 +3 oct, d5 +3 oct |
43 | 4291.709 | 12/1 | P5 +3 oct |
44 | 4391.516 | 13/1 | m6 +3 oct |
45 | 4491.323 | M6 +3 oct | |
46 | 4591.130 | 14/1 | m7 +3 oct |
47 | 4690.937 | 15/1 | M7 +3 oct |
48 | 4790.745 | 16/1 | P1 +4 oct |
Approximation to JI
Interval mappings
The following tables show how 16-integer-limit intervals are represented in 34zpi. Prime harmonics are in bold; inconsistent intervals are in italics.
Ratio | Error (abs, ¢) | Error (rel, %) |
---|---|---|
4/3 | +0.991 | +0.993 |
8/3 | -1.323 | -1.325 |
16/9 | +1.982 | +1.986 |
2/1 | -2.314 | -2.318 |
15/1 | +2.669 | +2.674 |
3/2 | -3.305 | -3.311 |
16/3 | -3.637 | -3.644 |
9/8 | -4.296 | -4.304 |
4/1 | -4.628 | -4.637 |
15/2 | +4.983 | +4.992 |
3/1 | -5.619 | -5.629 |
10/1 | +5.974 | +5.985 |
9/4 | -6.609 | -6.622 |
8/1 | -6.941 | -6.955 |
15/4 | +7.296 | +7.311 |
6/1 | -7.932 | -7.948 |
5/1 | +8.287 | +8.303 |
9/2 | -8.923 | -8.941 |
16/1 | -9.255 | -9.273 |
15/8 | +9.610 | +9.629 |
13/11 | +10.212 | +10.232 |
12/1 | -10.246 | -10.266 |
5/2 | +10.601 | +10.622 |
9/1 | -11.237 | -11.259 |
10/3 | +11.592 | +11.614 |
16/15 | -11.924 | -11.947 |
5/4 | +12.915 | +12.940 |
5/3 | +13.906 | +13.933 |
14/5 | +14.017 | +14.044 |
8/5 | -15.229 | -15.258 |
11/7 | +15.965 | +15.996 |
6/5 | -16.220 | -16.251 |
7/5 | +16.331 | +16.362 |
10/9 | +17.211 | +17.244 |
16/5 | -17.543 | -17.577 |
14/11 | -18.279 | -18.315 |
12/5 | -18.534 | -18.569 |
10/7 | -18.645 | -18.681 |
9/5 | -19.524 | -19.562 |
15/14 | -19.636 | -19.674 |
15/7 | -21.949 | -21.992 |
14/1 | +22.304 | +22.347 |
7/1 | +24.618 | +24.666 |
13/7 | +26.177 | +26.228 |
7/2 | +26.932 | +26.984 |
14/3 | +27.923 | +27.977 |
14/13 | -28.491 | -28.546 |
7/4 | +29.246 | +29.302 |
7/3 | +30.237 | +30.295 |
8/7 | -31.560 | -31.621 |
11/5 | +32.296 | +32.359 |
7/6 | +32.551 | +32.614 |
14/9 | +33.542 | +33.606 |
16/7 | -33.874 | -33.939 |
11/10 | +34.610 | +34.677 |
12/7 | -34.864 | -34.932 |
9/7 | -35.855 | -35.925 |
13/9 | -37.775 | -37.848 |
15/11 | -37.915 | -37.988 |
13/12 | -38.765 | -38.840 |
16/13 | +39.756 | +39.833 |
11/1 | +40.584 | +40.662 |
13/6 | -41.079 | -41.159 |
13/8 | -42.070 | -42.151 |
13/5 | +42.508 | +42.590 |
11/2 | +42.897 | +42.980 |
13/3 | -43.393 | -43.477 |
13/4 | -44.384 | -44.470 |
13/10 | +44.822 | +44.909 |
11/4 | +45.211 | +45.299 |
11/3 | +46.202 | +46.291 |
13/2 | -46.698 | -46.788 |
11/8 | +47.525 | +47.617 |
11/9 | -47.986 | -48.079 |
15/13 | -48.127 | -48.220 |
11/6 | +48.516 | +48.610 |
12/11 | +48.977 | +49.072 |
13/1 | -49.012 | -49.106 |
16/11 | -49.839 | -49.935 |
Ratio | Error (abs, ¢) | Error (rel, %) |
---|---|---|
4/3 | +0.991 | +0.993 |
8/3 | -1.323 | -1.325 |
16/9 | +1.982 | +1.986 |
2/1 | -2.314 | -2.318 |
15/1 | +2.669 | +2.674 |
3/2 | -3.305 | -3.311 |
16/3 | -3.637 | -3.644 |
9/8 | -4.296 | -4.304 |
4/1 | -4.628 | -4.637 |
15/2 | +4.983 | +4.992 |
3/1 | -5.619 | -5.629 |
10/1 | +5.974 | +5.985 |
9/4 | -6.609 | -6.622 |
8/1 | -6.941 | -6.955 |
15/4 | +7.296 | +7.311 |
6/1 | -7.932 | -7.948 |
5/1 | +8.287 | +8.303 |
9/2 | -8.923 | -8.941 |
16/1 | -9.255 | -9.273 |
15/8 | +9.610 | +9.629 |
12/1 | -10.246 | -10.266 |
5/2 | +10.601 | +10.622 |
9/1 | -11.237 | -11.259 |
10/3 | +11.592 | +11.614 |
16/15 | -11.924 | -11.947 |
5/4 | +12.915 | +12.940 |
5/3 | +13.906 | +13.933 |
14/5 | +14.017 | +14.044 |
8/5 | -15.229 | -15.258 |
11/7 | +15.965 | +15.996 |
6/5 | -16.220 | -16.251 |
7/5 | +16.331 | +16.362 |
10/9 | +17.211 | +17.244 |
16/5 | -17.543 | -17.577 |
14/11 | -18.279 | -18.315 |
12/5 | -18.534 | -18.569 |
10/7 | -18.645 | -18.681 |
9/5 | -19.524 | -19.562 |
15/14 | -19.636 | -19.674 |
15/7 | -21.949 | -21.992 |
14/1 | +22.304 | +22.347 |
7/1 | +24.618 | +24.666 |
7/2 | +26.932 | +26.984 |
14/3 | +27.923 | +27.977 |
7/4 | +29.246 | +29.302 |
7/3 | +30.237 | +30.295 |
8/7 | -31.560 | -31.621 |
11/5 | +32.296 | +32.359 |
7/6 | +32.551 | +32.614 |
14/9 | +33.542 | +33.606 |
16/7 | -33.874 | -33.939 |
11/10 | +34.610 | +34.677 |
12/7 | -34.864 | -34.932 |
9/7 | -35.855 | -35.925 |
13/9 | -37.775 | -37.848 |
15/11 | -37.915 | -37.988 |
13/12 | -38.765 | -38.840 |
16/13 | +39.756 | +39.833 |
11/1 | +40.584 | +40.662 |
13/6 | -41.079 | -41.159 |
13/8 | -42.070 | -42.151 |
11/2 | +42.897 | +42.980 |
13/3 | -43.393 | -43.477 |
13/4 | -44.384 | -44.470 |
11/4 | +45.211 | +45.299 |
11/3 | +46.202 | +46.291 |
13/2 | -46.698 | -46.788 |
11/8 | +47.525 | +47.617 |
11/6 | +48.516 | +48.610 |
13/1 | -49.012 | -49.106 |
16/11 | -49.839 | -49.935 |
12/11 | -50.830 | -50.928 |
15/13 | +51.680 | +51.780 |
11/9 | +51.821 | +51.921 |
13/10 | -54.985 | -55.091 |
13/5 | -57.299 | -57.410 |
14/13 | +71.316 | +71.454 |
13/7 | -73.630 | -73.772 |
13/11 | -89.595 | -89.768 |
See also
![]() |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |