26th-octave temperaments: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
m Improve categories
No edit summary
 
(20 intermediate revisions by 7 users not shown)
Line 1: Line 1:
All temperaments on this page have a period that is 1/26th of an octave, i.e. their [[pergen]] is (P8/26, P5). However, the {{monzo|-41 26}} comma is not tempered out. Thus the 3/2 is not [[26edo|26EDO]]'s 3/2. However, 7/4 is, as is 11/8 in the Bosonic temperaments.  
{{Technical data page}}
{{Infobox fractional-octave|26}}
All temperaments on this page have a period that is [[Fractional-octave temperaments|1/26th of an octave]]. However, the {{monzo| -41 26 }} comma is not tempered out. Thus the 3/2 is not that of [[26edo]]. However, 7/4 is, as is 11/8 in the Bosonic temperaments.
 
26edo is very accurate for 7th harmonic, the [[26-7-comma]] ({{monzo|73 0 0 -26}}, the amount by which 26 septimal whole tones ([[8/7]]) exceed 5 octaves) is tempered out by 26-fold multiple EDOs up to 1456 (such as [[26edo|26]], [[130edo|130]], [[286edo|286]] or [[546edo|546]] EDO).


== Bosonic ==
== Bosonic ==
{{See also| High badness temperaments #Tridecatonic }}
Subgroup: 2.3.5.7
Subgroup: 2.3.5.7


[[Comma list]]: 321489/320000, 589824/588245
[[Comma list]]: 321489/320000, 589824/588245


[[Mapping]]: [{{val|26 0 -22 73}}, {{val|0 1 2 0}}]
[[Mapping]]: [{{val| 26 0 -22 73 }}, {{val| 0 1 2 0 }}]


Mapping generators: ~36/35, ~3
Mapping generators: ~36/35, ~3
{{Multival|legend=1|26 52 0 22 -73 -146}}


[[POTE generator]]: ~3/2 = 701.250
[[POTE generator]]: ~3/2 = 701.250


{{Val list|legend=1| 26, 130, 546, 676, 806c }}
{{Optimal ET sequence|legend=1| 26, 130, 546, 676, 806c }}


[[Badness]]: 0.155827
[[Badness]]: 0.155827
Line 23: Line 27:
Comma list: 441/440, 8019/8000, 65536/65219
Comma list: 441/440, 8019/8000, 65536/65219


Mapping: [{{val|26 0 -22 73 90}}, {{val|0 1 2 0 0}}]
Mapping: [{{val| 26 0 -22 73 90 }}, {{val| 0 1 2 0 0 }}]


POTE generator: ~3/2 = 701.559
POTE generator: ~3/2 = 701.559


Vals: {{Val list| 26, 104c, 130 }}
{{Optimal ET sequence|legend=1| 26, 104c, 130 }}


Badness: 0.065219
Badness: 0.065219


=== 13-limit ===
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 351/350, 364/363, 441/440, 15379/15360
Comma list: 351/350, 364/363, 441/440, 15379/15360


Mapping: [{{val|26 0 -22 73 90 55}}, {{val|0 1 2 0 0 1}}]
Mapping: [{{val| 26 0 -22 73 90 55 }}, {{val| 0 1 2 0 0 1 }}]


POTE generator: ~3/2 = 701.546
POTE generator: ~3/2 = 701.546


Vals: {{Val list| 26, 104c, 130 }}
{{Optimal ET sequence|legend=1| 26, 104c, 130 }}


Badness: 0.032946
Badness: 0.032946


== Fermionic ==
=== Fermionic ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 540/539, 78408/78125, 177147/176000
Comma list: 540/539, 78408/78125, 177147/176000


Mapping: [{{val|26 0 -22 73 -116}}, {{val|0 1 2 0 5}}]
Mapping: [{{val| 26 0 -22 73 -116 }}, {{val| 0 1 2 0 5 }}]


POTE generator: ~3/2 = 701.077
POTE generator: ~3/2 = 701.077


Vals: {{Val list| 130, 286, 416, 546, 1508bcd }}
{{Optimal ET sequence|legend=1| 130, 286, 416, 546, 1508bcd }}


Badness: 0.090642
Badness: 0.090642


=== 13-limit ===
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 351/350, 540/539, 40656/40625, 142884/142805
Comma list: 351/350, 540/539, 40656/40625, 142884/142805


Mapping: [{{val|26 0 -22 73 -116 55}}, {{val|0 1 2 0 5 1}}]
Mapping: [{{val| 26 0 -22 73 -116 55 }}, {{val| 0 1 2 0 5 1 }}]


POTE generator: ~3/2 = 701.038
POTE generator: ~3/2 = 701.038


Vals: {{Val list| 130, 286, 416, 546, 962bf }}
{{Optimal ET sequence|legend=1| 130, 286, 416, 546, 962bf }}


Badness: 0.043581
Badness: 0.043581
== Iron ==
''Iron'' is named after the 26th element.
[[Subgroup]]: 2.3.5.7
[[Comma list]]: 2460375/2458624, 2147483648/2144153025
[[Mapping]]: [{{val|26 26 106 73}}, {{val|0 1 -3 0}}]
[[Mapping]] [[generators]]: ~17280/16807 = 1\26, ~3/2 = 702.017
[[Optimal tuning]] ([[CTE]]):  ~3/2 = 702.017
{{Optimal ET sequence|legend=1|130, 364, 494, 624}}, ...
=== 11-limit ===
Subgroup: 2.3.5.7.11
Comma list: 9801/9800, 131072/130977, 759375/758912
Mapping: [{{val|26 26 106 73 166}}, {{val|0 1 -3 0 -5}}]
Mapping generators: ~77/75 = 1\26, ~3/2 = 702.017
Optimal tuning (CTE):  ~3/2 = 702.017
{{Optimal ET sequence|legend=1|130, 364, 494, 624}}, ...
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Comma list: 1716/1715, 2080/2079, 4096/4095, 91125/91091
Mapping: [{{val|26 26 106 73 166 81}}], {{val|0 1 -3 0 -5 1}}]
Mapping generators: ~77/75 = 1\26, ~3/2 = 702.018
Optimal tuning (CTE):  ~3/2 = 702.018
{{Optimal ET sequence|legend=1|130, 364, 494, 624}}, ...
{{Navbox fractional-octave}}


[[Category:26edo]]
[[Category:26edo]]
[[Category:Regular temperament theory]]
[[Category:Temperament collection]]
[[Category:Rank 2]]

Latest revision as of 05:13, 12 June 2025

This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.

All temperaments on this page have a period that is 1/26th of an octave. However, the [-41 26 comma is not tempered out. Thus the 3/2 is not that of 26edo. However, 7/4 is, as is 11/8 in the Bosonic temperaments.

26edo is very accurate for 7th harmonic, the 26-7-comma ([73 0 0 -26, the amount by which 26 septimal whole tones (8/7) exceed 5 octaves) is tempered out by 26-fold multiple EDOs up to 1456 (such as 26, 130, 286 or 546 EDO).

Bosonic

Subgroup: 2.3.5.7

Comma list: 321489/320000, 589824/588245

Mapping: [26 0 -22 73], 0 1 2 0]]

Mapping generators: ~36/35, ~3

POTE generator: ~3/2 = 701.250

Optimal ET sequence26, 130, 546, 676, 806c

Badness: 0.155827

11-limit

Subgroup: 2.3.5.7.11

Comma list: 441/440, 8019/8000, 65536/65219

Mapping: [26 0 -22 73 90], 0 1 2 0 0]]

POTE generator: ~3/2 = 701.559

Optimal ET sequence26, 104c, 130

Badness: 0.065219

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 351/350, 364/363, 441/440, 15379/15360

Mapping: [26 0 -22 73 90 55], 0 1 2 0 0 1]]

POTE generator: ~3/2 = 701.546

Optimal ET sequence26, 104c, 130

Badness: 0.032946

Fermionic

Subgroup: 2.3.5.7.11

Comma list: 540/539, 78408/78125, 177147/176000

Mapping: [26 0 -22 73 -116], 0 1 2 0 5]]

POTE generator: ~3/2 = 701.077

Optimal ET sequence130, 286, 416, 546, 1508bcd

Badness: 0.090642

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 351/350, 540/539, 40656/40625, 142884/142805

Mapping: [26 0 -22 73 -116 55], 0 1 2 0 5 1]]

POTE generator: ~3/2 = 701.038

Optimal ET sequence130, 286, 416, 546, 962bf

Badness: 0.043581

Iron

Iron is named after the 26th element.

Subgroup: 2.3.5.7

Comma list: 2460375/2458624, 2147483648/2144153025

Mapping: [26 26 106 73], 0 1 -3 0]]

Mapping generators: ~17280/16807 = 1\26, ~3/2 = 702.017

Optimal tuning (CTE): ~3/2 = 702.017

Optimal ET sequence130, 364, 494, 624, ...

11-limit

Subgroup: 2.3.5.7.11

Comma list: 9801/9800, 131072/130977, 759375/758912

Mapping: [26 26 106 73 166], 0 1 -3 0 -5]]

Mapping generators: ~77/75 = 1\26, ~3/2 = 702.017

Optimal tuning (CTE): ~3/2 = 702.017

Optimal ET sequence130, 364, 494, 624, ...

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 1716/1715, 2080/2079, 4096/4095, 91125/91091

Mapping: [26 26 106 73 166 81]], 0 1 -3 0 -5 1]]

Mapping generators: ~77/75 = 1\26, ~3/2 = 702.018

Optimal tuning (CTE): ~3/2 = 702.018

Optimal ET sequence130, 364, 494, 624, ...


ViewTalkEditFractional-octave temperaments 
22nd23rd24th25th26th-octave27th28th29th30th