383edo: Difference between revisions
Adopt template: EDO intro; cleanup; clarify the title row of the rank-2 temp table; -redundant categories |
m Text replacement - "[[Helmholtz temperament|" to "[[Helmholtz (temperament)|" |
||
(7 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{ | {{ED intro}} | ||
== Theory == | == Theory == | ||
383edo is [[consistency|distinctly consistent]] through the [[15-odd-limit]] with a flat tendency. | 383edo is [[consistency|distinctly consistent]] through the [[15-odd-limit]] with a flat tendency. As an equal temperament, it [[tempering out|tempers out]] 32805/32768 ([[schisma]]) in the [[5-limit]]; [[2401/2400]] in the [[7-limit]]; [[3025/3024]], [[4000/3993]] and [[6250/6237]] in the [[11-limit]]; and [[625/624]], [[1575/1573]] and [[2080/2079]] in the [[13-limit]]. It provides the [[optimal patent val]] for the [[countertertiaschis]] temperament, and a good tuning for [[sesquiquartififths]] in the higher limits. | ||
=== Prime harmonics === | === Prime harmonics === | ||
{{Harmonics in equal|383 | {{Harmonics in equal|383}} | ||
=== Subsets and supersets === | === Subsets and supersets === | ||
Line 13: | Line 13: | ||
== Regular temperament properties == | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
|- | |||
! rowspan="2" | [[Subgroup]] | ! rowspan="2" | [[Subgroup]] | ||
! rowspan="2" | [[Comma list | ! rowspan="2" | [[Comma list]] | ||
! rowspan="2" | [[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
! rowspan="2" | Optimal<br>8ve | ! rowspan="2" | Optimal<br />8ve stretch (¢) | ||
! colspan="2" | Tuning | ! colspan="2" | Tuning error | ||
|- | |- | ||
! [[TE error|Absolute]] (¢) | ! [[TE error|Absolute]] (¢) | ||
Line 60: | Line 61: | ||
=== Rank-2 temperaments === | === Rank-2 temperaments === | ||
{| class="wikitable center-all left-5" | {| class="wikitable center-all left-5" | ||
|+Table of rank-2 temperaments by generator | |+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | ||
! Periods<br>per 8ve | |- | ||
! Periods<br />per 8ve | |||
! Generator* | ! Generator* | ||
! Cents* | ! Cents* | ||
! Associated<br> | ! Associated<br />ratio* | ||
! Temperaments | ! Temperaments | ||
|- | |- | ||
Line 89: | Line 91: | ||
| 498.17 | | 498.17 | ||
| 4/3 | | 4/3 | ||
| [[Helmholtz]] | | [[Helmholtz (temperament)|Helmholtz]] | ||
|} | |} | ||
<nowiki>* | <nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct | ||
== Music == | |||
; [[Francium]] | |||
* "Mark A Player" from ''I Want To'' (2025) – [https://open.spotify.com/track/1M3LmqPfXRjpxuuTRgEufN Spotify] | [https://francium223.bandcamp.com/track/mark-a-player Bandcamp] | [https://www.youtube.com/watch?v=ePR_S5cNZvI YouTube] – in Marconic, 383edo tuning | |||
[[Category:Countertertiaschis]] | [[Category:Countertertiaschis]] |
Latest revision as of 02:30, 17 April 2025
← 382edo | 383edo | 384edo → |
383 equal divisions of the octave (abbreviated 383edo or 383ed2), also called 383-tone equal temperament (383tet) or 383 equal temperament (383et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 383 equal parts of about 3.13 ¢ each. Each step represents a frequency ratio of 21/383, or the 383rd root of 2.
Theory
383edo is distinctly consistent through the 15-odd-limit with a flat tendency. As an equal temperament, it tempers out 32805/32768 (schisma) in the 5-limit; 2401/2400 in the 7-limit; 3025/3024, 4000/3993 and 6250/6237 in the 11-limit; and 625/624, 1575/1573 and 2080/2079 in the 13-limit. It provides the optimal patent val for the countertertiaschis temperament, and a good tuning for sesquiquartififths in the higher limits.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | -0.13 | -0.94 | -0.68 | +0.12 | -0.84 | -1.56 | +0.14 | +1.49 | +1.23 | -1.43 |
Relative (%) | +0.0 | -4.1 | -29.8 | -21.7 | +3.8 | -26.8 | -49.8 | +4.4 | +47.6 | +39.3 | -45.7 | |
Steps (reduced) |
383 (0) |
607 (224) |
889 (123) |
1075 (309) |
1325 (176) |
1417 (268) |
1565 (33) |
1627 (95) |
1733 (201) |
1861 (329) |
1897 (365) |
Subsets and supersets
383edo is the 76th prime edo.
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [-607 383⟩ | [⟨383 607]] | +0.0402 | 0.0402 | 1.28 |
2.3.5 | 32805/32768, [-8 -55 41⟩ | [⟨383 607 889]] | +0.1610 | 0.1741 | 5.55 |
2.3.5.7 | 2401/2400, 32805/32768, 68359375/68024448 | [⟨383 607 889 1075]] | +0.1813 | 0.1548 | 4.94 |
2.3.5.7.11 | 2401/2400, 3025/3024, 4000/3993, 32805/32768 | [⟨383 607 889 1075 1325]] | +0.1382 | 0.1631 | 5.20 |
2.3.5.7.11.13 | 625/624, 1575/1573, 2080/2079, 2401/2400, 10985/10976 | [⟨383 607 889 1075 1325 1417]] | +0.1531 | 0.1525 | 4.87 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperaments |
---|---|---|---|---|
1 | 53\383 | 166.06 | 11/10 | Countertertiaschis |
1 | 56\383 | 175.46 | 448/405 | Sesquiquartififths |
1 | 133\383 | 416.71 | 14/11 | Unthirds |
1 | 159\383 | 498.17 | 4/3 | Helmholtz |
* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct