|
|
(30 intermediate revisions by 14 users not shown) |
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | {{Infobox MOS |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| | | Periods = 2 |
| : This revision was by author [[User:keenanpepper|keenanpepper]] and made on <tt>2011-11-25 21:04:50 UTC</tt>.<br>
| | | nLargeSteps = 4 |
| : The original revision id was <tt>279104614</tt>.<br>
| | | nSmallSteps = 2 |
| : The revision comment was: <tt></tt><br>
| | | Equalized = 1 |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| | | Collapsed = 1 |
| <h4>Original Wikitext content:</h4>
| | | Pattern = LLsLLs |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">There are three scales with this [[MOSScales|MOS]] pattern that are significant minima of harmonic entropy.
| | | Name = citric |
| | }} |
| | {{MOS intro}} |
|
| |
|
| The first is [[Chromatic pairs#Antikythera|antikythera]], or no-3's [[Diaschismic family|srutal/pajara]], which is srutal/pajara without any intervals containing 3 in their prime factorization, so it becomes a 2.5.9 or 2.5.7.9 subgroup temperament. This means that the generator is twice that of srutal/pajara (210-220 cents rather than 105-110), since odd numbers of generators are only needed for intervals with 3. So this is a basically "whole tone" scale, but made uneven so some 2-step intervals are 5/4 and others are 9/7.
| | 4L 2s can be seen as a [[Warped diatonic|warped diatonic scale]], where one large step of diatonic (5L 2s) is removed, or as the equal-tempered whole-tone scale ([[6edo]]), but with two "whole tones" that are smaller than the others. |
|
| |
|
| The second is [[Dicot family|decimal]], in which two generators make a 4/3, and the third is [[Jubilismic clan|Doublewide]], in which the generator is 7/6 so the period minus the generator is 6/5.
| | Scales with the true MOS pattern are always [[Rothenberg propriety|proper]], because there is only one small step per period. In addition, there are near-MOS patterns, such as LLLsLs, in which the period is the only generic interval that has more than two specific representatives. The near-MOS is only proper if the generator is smaller than 2\10 of an octave (240{{c}}). |
|
| |
|
| In addition to the true MOS with pattern LLsLLs, all these scales also come in a near-MOS version, LLLsLs, in which the period is the only generic interval that has more than two specific representatives. The true MOS is always proper, but the near-MOS is only proper if the generator is smaller than 2\10 of an octave (240 cents).
| | == Name == |
| | [[TAMNAMS]] suggests the temperament-agnostic name '''citric''' for this scale. |
|
| |
|
| ||||||||||||||||||||||~ Generator ||~ Cents ||~ Comments ||
| | == Theory == |
| || 1\6 || || || || || || || || || || || 200 ||= ||
| | === Low harmonic entropy scales === |
| || || || || || || 6\34 || || || || || || 211.76 ||= ||
| | There are three scales with this [[MOS]] pattern that are significant minima of harmonic entropy. The first is [[antikythera]], or no-3's [[Diaschismic_family|srutal/pajara]], which is srutal/pajara without any intervals containing 3 in their prime factorization, so it becomes a 2.5.9 or 2.5.7.9 subgroup temperament. This means that the generator is twice that of srutal/pajara (210–220{{c}} rather than 105–110), since odd numbers of generators are only needed for intervals with 3. So this is a basically "whole tone" scale, but made uneven so some 2-step intervals are 5/4 and others are 9/7. |
| || || || || || 5\28 || || || || || || || 214.29 ||= Antikythera is around here ||
| |
| || || || || 4\22 || || || || || || || || 218.18 ||= ||
| |
| || || || 3\16 || || || || || || || || || 225 ||= ||
| |
| || || || || || 8\42 || || || || || || || 228.57 ||= ||
| |
| || || || || || || || || || || || || 600/(1+phi) ||= Golden lemba ||
| |
| || || || || || || 13\68 || || || || || || 229.41 ||= ||
| |
| || || || || 5\26 || || || || || || || || 230.77 ||= ||
| |
| || || || || || 7\36 || || || || || || || 233.33 ||= Lemba is around here ||
| |
| || || 2\10 || || || || || || || || || || 240 ||= Boundary of propriety for near-MOS
| |
| Optimum rank range (L/s=2/1) for MOS ||
| |
| || || || || 5\24 || || || || || || || || 250 ||= Decimal is around here ||
| |
| || || || 3\14 || || || || || || || || || 257.14 ||= ||
| |
| || || || || 4\18 || || || || || || || || 266.67 ||= ||
| |
| || || || || || 5\22 || || || || || || || 272.73 ||= ||
| |
| || || || || || || 6\26 || || || || || || 276.92 ||= ||
| |
| || || || || || || || 7\30 || || || || || 280 ||= ||
| |
| || || || || || || || || 8\34 || || || || 282.35 ||= ||
| |
| || || || || || || || || || 9\38 || || || 284.21 ||= ||
| |
| || || || || || || || || || || 10\42 || || 285.71 ||= ||
| |
| || || || || || || || || || || || 11\46 || 286.96 ||= Doublewide is around here ||
| |
| || 1\4 || || || || || || || || || || || 300 ||= ||</pre></div>
| |
| <h4>Original HTML content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>4L 2s</title></head><body>There are three scales with this <a class="wiki_link" href="/MOSScales">MOS</a> pattern that are significant minima of harmonic entropy.<br />
| |
| <br />
| |
| The first is <a class="wiki_link" href="/Chromatic%20pairs#Antikythera">antikythera</a>, or no-3's <a class="wiki_link" href="/Diaschismic%20family">srutal/pajara</a>, which is srutal/pajara without any intervals containing 3 in their prime factorization, so it becomes a 2.5.9 or 2.5.7.9 subgroup temperament. This means that the generator is twice that of srutal/pajara (210-220 cents rather than 105-110), since odd numbers of generators are only needed for intervals with 3. So this is a basically &quot;whole tone&quot; scale, but made uneven so some 2-step intervals are 5/4 and others are 9/7.<br /> | |
| <br />
| |
| The second is <a class="wiki_link" href="/Dicot%20family">decimal</a>, in which two generators make a 4/3, and the third is <a class="wiki_link" href="/Jubilismic%20clan">Doublewide</a>, in which the generator is 7/6 so the period minus the generator is 6/5.<br />
| |
| <br />
| |
| In addition to the true MOS with pattern LLsLLs, all these scales also come in a near-MOS version, LLLsLs, in which the period is the only generic interval that has more than two specific representatives. The true MOS is always proper, but the near-MOS is only proper if the generator is smaller than 2\10 of an octave (240 cents).<br />
| |
| <br />
| |
|
| |
|
| | The second is [[Dicot_family|decimal]], in which two generators make a 4/3, and the third is [[Jubilismic_clan|Doublewide]], in which the generator is 7/6 so the period minus the generator is 6/5. |
|
| |
|
| <table class="wiki_table">
| | == Scale properties == |
| <tr>
| | {{TAMNAMS use}} |
| <th colspan="11">Generator<br />
| |
| </th>
| |
| <th>Cents<br />
| |
| </th>
| |
| <th>Comments<br />
| |
| </th>
| |
| </tr>
| |
| <tr>
| |
| <td>1\6<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>200<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>6\34<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>211.76<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>5\28<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>214.29<br />
| |
| </td>
| |
| <td style="text-align: center;">Antikythera is around here<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>4\22<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>218.18<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>3\16<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>225<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>8\42<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>228.57<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>600/(1+phi)<br />
| |
| </td>
| |
| <td style="text-align: center;">Golden lemba<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>13\68<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>229.41<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>5\26<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>230.77<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>7\36<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>233.33<br />
| |
| </td>
| |
| <td style="text-align: center;">Lemba is around here<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>2\10<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>240<br />
| |
| </td>
| |
| <td style="text-align: center;">Boundary of propriety for near-MOS<br />
| |
| Optimum rank range (L/s=2/1) for MOS<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>5\24<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>250<br />
| |
| </td>
| |
| <td style="text-align: center;">Decimal is around here<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>3\14<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>257.14<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>4\18<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>266.67<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>5\22<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>272.73<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>6\26<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>276.92<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>7\30<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>280<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>8\34<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>282.35<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>9\38<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>284.21<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>10\42<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>285.71<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>11\46<br />
| |
| </td>
| |
| <td>286.96<br />
| |
| </td>
| |
| <td style="text-align: center;">Doublewide is around here<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1\4<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>300<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| </body></html></pre></div>
| | === Intervals === |
| | {{MOS intervals}} |
| | |
| | === Generator chain === |
| | {{MOS genchain}} |
| | |
| | === Modes === |
| | {{MOS mode degrees}} |
| | |
| | == Scale tree == |
| | {{MOS tuning spectrum |
| | | 5/4 = Antikythera |
| | | 13/8 = Golden lemba |
| | | 7/4 = Lemba is around here |
| | | 2/1 = Optimum rank range |
| | | 6/1 = Doublewide is around here |
| | }} |
| | |
| | [[Category:6-tone scales]] |
4L 2s, named citric in TAMNAMS, is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 4 large steps and 2 small steps, with a period of 2 large steps and 1 small step that repeats every 600.0 ¢, or twice every octave. Generators that produce this scale range from 200 ¢ to 300 ¢, or from 300 ¢ to 400 ¢. Scales of the true MOS form, where every period is the same, are proper because there is only one small step per period.
4L 2s can be seen as a warped diatonic scale, where one large step of diatonic (5L 2s) is removed, or as the equal-tempered whole-tone scale (6edo), but with two "whole tones" that are smaller than the others.
Scales with the true MOS pattern are always proper, because there is only one small step per period. In addition, there are near-MOS patterns, such as LLLsLs, in which the period is the only generic interval that has more than two specific representatives. The near-MOS is only proper if the generator is smaller than 2\10 of an octave (240 ¢).
Name
TAMNAMS suggests the temperament-agnostic name citric for this scale.
Theory
Low harmonic entropy scales
There are three scales with this MOS pattern that are significant minima of harmonic entropy. The first is antikythera, or no-3's srutal/pajara, which is srutal/pajara without any intervals containing 3 in their prime factorization, so it becomes a 2.5.9 or 2.5.7.9 subgroup temperament. This means that the generator is twice that of srutal/pajara (210–220 ¢ rather than 105–110), since odd numbers of generators are only needed for intervals with 3. So this is a basically "whole tone" scale, but made uneven so some 2-step intervals are 5/4 and others are 9/7.
The second is decimal, in which two generators make a 4/3, and the third is Doublewide, in which the generator is 7/6 so the period minus the generator is 6/5.
Scale properties
- This article uses TAMNAMS conventions for the names of this scale's intervals and scale degrees. The use of 1-indexed ordinal names is reserved for interval regions.
Intervals
Intervals of 4L 2s
Intervals
|
Steps subtended
|
Range in cents
|
Generic
|
Specific
|
Abbrev.
|
0-citrostep
|
Perfect 0-citrostep
|
P0cits
|
0
|
0.0 ¢
|
1-citrostep
|
Diminished 1-citrostep
|
d1cits
|
s
|
0.0 ¢ to 200.0 ¢
|
Perfect 1-citrostep
|
P1cits
|
L
|
200.0 ¢ to 300.0 ¢
|
2-citrostep
|
Perfect 2-citrostep
|
P2cits
|
L + s
|
300.0 ¢ to 400.0 ¢
|
Augmented 2-citrostep
|
A2cits
|
2L
|
400.0 ¢ to 600.0 ¢
|
3-citrostep
|
Perfect 3-citrostep
|
P3cits
|
2L + s
|
600.0 ¢
|
4-citrostep
|
Diminished 4-citrostep
|
d4cits
|
2L + 2s
|
600.0 ¢ to 800.0 ¢
|
Perfect 4-citrostep
|
P4cits
|
3L + s
|
800.0 ¢ to 900.0 ¢
|
5-citrostep
|
Perfect 5-citrostep
|
P5cits
|
3L + 2s
|
900.0 ¢ to 1000.0 ¢
|
Augmented 5-citrostep
|
A5cits
|
4L + s
|
1000.0 ¢ to 1200.0 ¢
|
6-citrostep
|
Perfect 6-citrostep
|
P6cits
|
4L + 2s
|
1200.0 ¢
|
Generator chain
Generator chain of 4L 2s
Bright gens |
Scale degree |
Abbrev. |
Scale degree |
Abbrev.
|
4 |
Augmented 1-citrodegree |
A1citd |
Augmented 4-citrodegree |
A4citd
|
3 |
Augmented 0-citrodegree |
A0citd |
Augmented 3-citrodegree |
A3citd
|
2 |
Augmented 2-citrodegree |
A2citd |
Augmented 5-citrodegree |
A5citd
|
1 |
Perfect 1-citrodegree |
P1citd |
Perfect 4-citrodegree |
P4citd
|
0 |
Perfect 0-citrodegree Perfect 3-citrodegree |
P0citd P3citd |
Perfect 3-citrodegree Perfect 6-citrodegree |
P3citd P6citd
|
−1 |
Perfect 2-citrodegree |
P2citd |
Perfect 5-citrodegree |
P5citd
|
−2 |
Diminished 1-citrodegree |
d1citd |
Diminished 4-citrodegree |
d4citd
|
−3 |
Diminished 3-citrodegree |
d3citd |
Diminished 6-citrodegree |
d6citd
|
−4 |
Diminished 2-citrodegree |
d2citd |
Diminished 5-citrodegree |
d5citd
|
Modes
Scale degrees of the modes of 4L 2s
UDP
|
Cyclic order
|
Step pattern
|
Scale degree (citrodegree)
|
0
|
1
|
2
|
3
|
4
|
5
|
6
|
4|0(2)
|
1
|
LLsLLs
|
Perf.
|
Perf.
|
Aug.
|
Perf.
|
Perf.
|
Aug.
|
Perf.
|
2|2(2)
|
2
|
LsLLsL
|
Perf.
|
Perf.
|
Perf.
|
Perf.
|
Perf.
|
Perf.
|
Perf.
|
0|4(2)
|
3
|
sLLsLL
|
Perf.
|
Dim.
|
Perf.
|
Perf.
|
Dim.
|
Perf.
|
Perf.
|
Scale tree
Scale tree and tuning spectrum of 4L 2s
Generator(edo)
|
Cents
|
Step ratio
|
Comments(always proper)
|
Bright
|
Dark
|
L:s
|
Hardness
|
1\6
|
|
|
|
|
|
200.000
|
400.000
|
1:1
|
1.000
|
Equalized 4L 2s
|
|
|
|
|
|
6\34
|
211.765
|
388.235
|
6:5
|
1.200
|
|
|
|
|
|
5\28
|
|
214.286
|
385.714
|
5:4
|
1.250
|
Antikythera
|
|
|
|
|
|
9\50
|
216.000
|
384.000
|
9:7
|
1.286
|
|
|
|
|
4\22
|
|
|
218.182
|
381.818
|
4:3
|
1.333
|
Supersoft 4L 2s
|
|
|
|
|
|
11\60
|
220.000
|
380.000
|
11:8
|
1.375
|
|
|
|
|
|
7\38
|
|
221.053
|
378.947
|
7:5
|
1.400
|
|
|
|
|
|
|
10\54
|
222.222
|
377.778
|
10:7
|
1.429
|
|
|
|
3\16
|
|
|
|
225.000
|
375.000
|
3:2
|
1.500
|
Soft 4L 2s
|
|
|
|
|
|
11\58
|
227.586
|
372.414
|
11:7
|
1.571
|
|
|
|
|
|
8\42
|
|
228.571
|
371.429
|
8:5
|
1.600
|
|
|
|
|
|
|
13\68
|
229.412
|
370.588
|
13:8
|
1.625
|
Golden lemba
|
|
|
|
5\26
|
|
|
230.769
|
369.231
|
5:3
|
1.667
|
Semisoft 4L 2s
|
|
|
|
|
|
12\62
|
232.258
|
367.742
|
12:7
|
1.714
|
|
|
|
|
|
7\36
|
|
233.333
|
366.667
|
7:4
|
1.750
|
Lemba is around here
|
|
|
|
|
|
9\46
|
234.783
|
365.217
|
9:5
|
1.800
|
|
|
2\10
|
|
|
|
|
240.000
|
360.000
|
2:1
|
2.000
|
Basic 4L 2s Optimum rank range
|
|
|
|
|
|
9\44
|
245.455
|
354.545
|
9:4
|
2.250
|
|
|
|
|
|
7\34
|
|
247.059
|
352.941
|
7:3
|
2.333
|
|
|
|
|
|
|
12\58
|
248.276
|
351.724
|
12:5
|
2.400
|
|
|
|
|
5\24
|
|
|
250.000
|
350.000
|
5:2
|
2.500
|
Semihard 4L 2s
|
|
|
|
|
|
13\62
|
251.613
|
348.387
|
13:5
|
2.600
|
|
|
|
|
|
8\38
|
|
252.632
|
347.368
|
8:3
|
2.667
|
|
|
|
|
|
|
11\52
|
253.846
|
346.154
|
11:4
|
2.750
|
|
|
|
3\14
|
|
|
|
257.143
|
342.857
|
3:1
|
3.000
|
Hard 4L 2s
|
|
|
|
|
|
10\46
|
260.870
|
339.130
|
10:3
|
3.333
|
|
|
|
|
|
7\32
|
|
262.500
|
337.500
|
7:2
|
3.500
|
|
|
|
|
|
|
11\50
|
264.000
|
336.000
|
11:3
|
3.667
|
|
|
|
|
4\18
|
|
|
266.667
|
333.333
|
4:1
|
4.000
|
Superhard 4L 2s
|
|
|
|
|
|
9\40
|
270.000
|
330.000
|
9:2
|
4.500
|
|
|
|
|
|
5\22
|
|
272.727
|
327.273
|
5:1
|
5.000
|
|
|
|
|
|
|
6\26
|
276.923
|
323.077
|
6:1
|
6.000
|
Doublewide is around here
|
1\4
|
|
|
|
|
|
300.000
|
300.000
|
1:0
|
→ ∞
|
Collapsed 4L 2s
|