275edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Aura (talk | contribs)
No edit summary
+subsets and supersets; style; -redundant category
Line 11: Line 11:
=== Prime harmonics ===
=== Prime harmonics ===
{{Harmonics in equal|275|intervals=prime|columns=11}}
{{Harmonics in equal|275|intervals=prime|columns=11}}
=== Subsets and supersets ===
Since 275 factors into 5<sup>2</sup> × 11, 275edo has subset edos {{EDOs| 5, 11, 25 and 55 }}.


== Regular temperament properties ==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Comma list|Comma List]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br>8ve Stretch (¢)
! rowspan="2" | Optimal<br>8ve Stretch (¢)
Line 98: Line 101:
| [[Hendecatonic]]
| [[Hendecatonic]]
|}
|}
[[Category:Equal divisions of the octave|###]] <!-- 3-digit number -->

Revision as of 05:32, 9 June 2023

← 274edo 275edo 276edo →
Prime factorization 52 × 11
Step size 4.36364 ¢ 
Fifth 161\275 (702.545 ¢)
Semitones (A1:m2) 27:20 (117.8 ¢ : 87.27 ¢)
Consistency limit 9
Distinct consistency limit 9

Template:EDO intro

Theory

If harmonic 5 is used, 275et tends very sharp. It tempers out [24 -21 4 (vulture comma) and [19 10 -15 (trisedodge comma) in the 5-limit; 6144/6125 and 10976/10935 in the 7-limit.

The 275e val 275 436 639 772 952] being the best, tempers out 441/440, 4000/3993, 14700/14641, and 19712/19683. This can be extended to the 13-limit through 364/363, 676/675, 1001/1000, 1575/1573 and 2080/2079.

The 275 val 275 436 639 772 951] tempers out 3025/3024, 3773/3750, 8019/8000. This can be extended to the 13-limit through 352/351, 676/675, 1716/1715, 2200/2197, and 3584/3575.

Prime harmonics

Approximation of prime harmonics in 275edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 +0.59 +2.05 -0.10 -1.50 +1.65 -0.23 -0.79 +0.09 +0.24 -1.76
Relative (%) +0.0 +13.5 +47.0 -2.3 -34.4 +37.9 -5.2 -18.0 +2.0 +5.5 -40.4
Steps
(reduced)
275
(0)
436
(161)
639
(89)
772
(222)
951
(126)
1018
(193)
1124
(24)
1168
(68)
1244
(144)
1336
(236)
1362
(262)

Subsets and supersets

Since 275 factors into 52 × 11, 275edo has subset edos 5, 11, 25 and 55.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [436 -275 [275 436]] -0.1863 0.1862 4.27
2.3.5 [24 -21 4, [19 10 -15 [275 436 639]] -0.4184 0.3618 8.29
2.3.5.7 6144/6125, 10976/10935, 9882516/9765625 [275 436 639 772]] -0.3051 0.3698 8.48
2.3.5.7.11 441/440, 4000/3993, 6144/6125, 10976/10935 [275 436 639 772 952]] (275e) -0.4096 0.3912 8.97
2.3.5.7.11.13 364/363, 441/440, 676/675, 6144/6125, 10976/10935 [275 436 639 772 952 1018]] (275e) -0.4158 0.3574 8.19

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator
(Reduced)
Cents
(Reduced)
Associated
Ratio
Temperaments
1 6\275 26.18 1594323/1562500 Sfourth (5-limit)
1 109\275 485.64 320/243 Vulture (5-limit)
1 128\275 558.55 112/81 Condor (275e)
5 17\275 74.18 25/24 Countdown (275e)
11 114\275
(11\275)
497.45
(48.00)
4/3
(36/35)
Hendecatonic