Kleismic rank three family

From Xenharmonic Wiki
(Redirected from Enlil)
Jump to navigation Jump to search

The kleismic rank-3 family of temperaments tempers out the kleisma, 15625/15552. If nothing else is tempered out in the 7-limit, we have a planar temperament. With an 11-limit comma we get an 11-limit temperament, and so forth.

Rank-3 kleismic

Subgroup: 2.3.5.7

Comma list: 15625/15552

Mapping[1 0 1 0], 0 6 5 0], 0 0 0 1]]

mapping generators: ~2, ~6/5, ~7

Optimal tuning (CTE): ~2 = 1\1, ~6/5 = 317.0586, ~7/4 = 968.8259

Minimax tuning:

[[1 0 0 0, [0 1 0 0, [1 5/6 0 0, [0 0 0 1]
eigenmonzo (unchanged-interval) basis: 2.3.7

Optimal ET sequence15, 19, 34d, 49, 53, 72, 140, 212, 617c, 829c

Badness: 0.363 × 10-3

2.3.5.7.13 subgroup

Subgroup: 2.3.5.7.13

Comma list: 325/324, 625/624

Sval mapping: [1 0 1 0 0], 0 6 5 0 14], 0 0 0 1 0]]

Optimal tuning (CTE): ~2 = 1\1, ~6/5 = 317.1110, ~7/4 = 968.8259

Optimal ET sequence15, 19, 34d, 49f, 53, 72, 121, 140, 333, 352f, 492f

Badness: 0.290 × 10-3

Enlil

Subgroup: 2.3.5.7.11

Comma list: 385/384, 6250/6237

Mapping[1 0 1 0 6], 0 6 5 0 1], 0 0 0 1 -1]]

Optimal tuning (CTE): ~2 = 1\1, ~6/5 = 317.0667, ~7/4 = 967.6041

Minimax tuning:

[[1 0 0 0 0, [0 1 0 0 0, [1 5/6 0 0 0, [3 1/12 0 1/2 -1/2, [3 1/12 0 -1/2 1/2]
eigenmonzo (unchanged-interval) basis: 2.3.11/7

Optimal ET sequence15, 19, 34, 38, 53, 68, 72, 140, 159, 212, 284, 496ce, 583cde, 655cde, 867ccdee, 939ccddee

Badness: 0.798 × 10-3

13-limit (sumatra)

Subgroup: 2.3.5.7.11.13

Comma list: 325/324, 385/384, 625/624

Mapping: [1 0 1 0 6 0], 0 6 5 0 1 14], 0 0 0 1 -1 0]]

Optimal tuning (CTE): ~2 = 1\1, ~6/5 = 317.1156, ~7/4 = 967.6235

Minimax tuning:

  • 13- and 15-odd-limit
[[1 0 0 0 0 0, [4/3 0 0 -2/9 -2/9 4/9, [19/9 0 0 -5/27 -5/27 10/27, [28/9 0 0 13/27 -14/27 1/27, [28/9 0 0 -14/27 13/27 1/27, [28/9 0 0 -14/27 -14/27 28/27]
eigenmonzo (unchanged-interval) basis: 2.11/7.13/7

Optimal ET sequence15, 19, 34, 53, 72, 87, 125f, 140, 159, 212, 299, 371df, 511cdef

Badness: 0.680 × 10-3

Complexity spectrum: 6/5, 18/13, 15/13, 5/4, 4/3, 10/9, 13/12, 13/10, 16/15, 9/8, 8/7, 11/8, 11/10, 7/5, 12/11, 7/6, 16/13, 15/11, 15/14, 11/9, 9/7, 13/11, 14/13, 14/11

Scales: enlil19_13

Isimud

Subgroup: 2.3.5.7.11

Comma list: 4125/4096, 8019/8000

Mapping[1 0 1 0 9], 0 6 5 0 -21], 0 0 0 1 0]]

Optimal tuning (CTE): ~2 = 1\1, ~6/5 = 316.7584, ~7/4 = 968.8259

Optimal ET sequence19, 34e, 53, 72, 197e, 269ce, 341ce, 375cdee, 447cdee, 519bccddee

Badness: 3.690 × 10-3

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 325/324, 625/624, 1287/1280

Mapping: [1 0 1 0 9 0], 0 6 5 0 -21 14], 0 0 0 1 0 0]]

Optimal tuning (CTE): ~2 = 1\1, ~6/5 = 316.8446, ~7/4 = 968.8259

Optimal ET sequence19, 34e, 53, 72, 125f, 178def, 197ef, 231eef, 250deff, 303cdeeff

Badness: 2.273 × 10-3

Enki

Subgroup: 2.3.5.7.11

Comma list: 3025/3024, 4375/4356

Mapping[1 0 1 0 1], 0 6 5 0 4], 0 0 0 2 1]]

mapping generators: ~2, ~6/5, ~66/25

Optimal tuning (CTE): ~2 = 1\1, ~6/5 = 317.0396, ~33/25 = 484.2358

Minimax tuning:

[[1 0 0 0 0, [-18/13 0 6/13 -6/13 12/13, [-2/13 0 5/13 -5/13 10/13, [-2/13 0 -8/13 8/13 10/13, [0 0 0 0 1]
eigenmonzo (unchanged-interval) basis: 2.7/5.11

Optimal ET sequence15, 23de, 34d, 49, 72, 159, 193, 265, 352, 424

Badness: 1.09 × 10-3

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 325/324, 364/363, 625/624

Mapping: [1 0 1 0 1 0], 0 6 5 0 4 14], 0 0 0 2 1 0]]

Optimal tuning (CTE): ~2 = 1\1, ~6/5 = 317.1387, ~33/25 = 483.3828

Minimax tuning:

  • 13- and 15-odd-limit
[[1 0 0 0 0 0, [2/3 0 -2/3 0 0 2/3, [14/9 0 -5/9 0 0 5/9, [0 0 0 1 0 0, [13/9 0 -4/9 1/2 0 4/9, [14/9 0 -14/9 0 0 14/9]
eigenmonzo (unchanged-interval) basis: 2.7.13/5

Optimal ET sequence34d, 49f, 72, 87, 159, 193, 280

Badness: 0.874 × 10-3