583edo
Jump to navigation
Jump to search
Prime factorization
11 × 53
Step size
2.05832¢
Fifth
341\583 (701.887¢) (→31\53)
Semitones (A1:m2)
55:44 (113.2¢ : 90.57¢)
Consistency limit
11
Distinct consistency limit
11
← 582edo | 583edo | 584edo → |
The 583 equal divisions of the octave (583edo), or the 583(-tone) equal temperament (583tet, 583et) when viewed from a regular temperament perspective, divides the octave into 583 equal parts of about 2.06 cents each.
Theory
This system apparently is at its best in the 2.3.11.17 subgroup. It also supports Iodine up to the 11-limit, but no further.
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | absolute (¢) | +0.000 | -0.068 | +0.650 | +0.642 | +0.312 | -0.733 | +0.019 | +0.943 | -0.487 | -0.418 | -0.610 | -0.229 |
relative (%) | +0 | -3 | +32 | +31 | +15 | -36 | +1 | +46 | -24 | -20 | -30 | -11 | |
Steps (reduced) |
583 (0) |
924 (341) |
1354 (188) |
1637 (471) |
2017 (268) |
2157 (408) |
2383 (51) |
2477 (145) |
2637 (305) |
2832 (500) |
2888 (556) |
3037 (122) |