584edo
← 583edo | 584edo | 585edo → |
584 equal divisions of the octave (abbreviated 584edo or 584ed2), also called 584-tone equal temperament (584tet) or 584 equal temperament (584et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 584 equal parts of about 2.05 ¢ each. Each step represents a frequency ratio of 21/584, or the 584th root of 2.
Theory
584edo is only consistent to the 5-odd-limit and the error of harmonic 3 is quite large. With reasonable approximations to harmonics 5, 7, 9, 11, 13, and 17, it commends itself as a 2.9.5.7.11.13.17 subgroup tuning.
If we use the harmonic 3 instead, we notice the better-tuned 584d val is enfactored, with the same tuning as 292edo. Therefore, we are left with the patent val, which tempers out 48828125/48771072 and 67108864/66976875, supporting hemiluna.
Odd harmonics
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.785 | -0.012 | -1.018 | -0.485 | -0.633 | -0.117 | +0.772 | -0.161 | +0.432 | -0.233 | +0.493 |
Relative (%) | +38.2 | -0.6 | -49.5 | -23.6 | -30.8 | -5.7 | +37.6 | -7.8 | +21.0 | -11.3 | +24.0 | |
Steps (reduced) |
926 (342) |
1356 (188) |
1639 (471) |
1851 (99) |
2020 (268) |
2161 (409) |
2282 (530) |
2387 (51) |
2481 (145) |
2565 (229) |
2642 (306) |
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [463 -292⟩ | [⟨584 926]] | −0.2476 | 0.2475 | 12.05 |
2.3.5 | [3 -18 11⟩, [21 -20 4⟩ | [⟨584 926 1356]] | −0.1633 | 0.2346 | 11.42 |
2.3.5.7 | 1500625/1492992, 1605632/1594323, 235298/234375 | [⟨584 926 1356 1639]] | −0.0319 | 0.3052 | 14.85 |
2.3.5.7.11 | 5632/5625, 160083/160000, 26411/26244, 968000/964467 | [⟨584 926 1356 1639 2020]] | +0.0111 | 0.2862 | 13.93 |
2.3.5.7.11.13 | 2080/2079, 1001/1000, 4096/4095, 85750/85293, 983125/979776 | [⟨584 926 1356 1639 2020 2161]] | +0.0145 | 0.2613 | 12.72 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperaments |
---|---|---|---|---|
1 | 47\584 | 96.58 | 200/189 | Hemiluna (584, 7-limit) |
* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct
Scales
Music
- Are You From The Moon? (2023) – hemiluna in 584edo tuning