94ed7/3
Jump to navigation
Jump to search
Prime factorization
2 × 47
Step size
15.605¢
Octave
77\94ed7/3 (1201.59¢)
Twelfth
122\94ed7/3 (1903.81¢) (→61\47ed7/3)
Consistency limit
9
Distinct consistency limit
9
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 93ed7/3 | 94ed7/3 | 95ed7/3 → |
94 equal divisions of 7/3 (abbreviated 94ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 94 equal parts of about 15.6 ¢ each. Each step represents a frequency ratio of (7/3)1/94, or the 94th root of 7/3.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 15.605 | |
2 | 31.21 | |
3 | 46.815 | 36/35, 37/36, 38/37, 39/38 |
4 | 62.42 | 28/27, 29/28 |
5 | 78.025 | 22/21, 23/22 |
6 | 93.63 | 19/18, 37/35, 39/37 |
7 | 109.235 | 16/15, 33/31 |
8 | 124.84 | 29/27 |
9 | 140.445 | 13/12, 38/35 |
10 | 156.05 | 23/21, 35/32 |
11 | 171.655 | 21/19, 32/29 |
12 | 187.26 | 29/26, 39/35 |
13 | 202.865 | 9/8 |
14 | 218.47 | 42/37 |
15 | 234.075 | |
16 | 249.68 | 15/13, 37/32 |
17 | 265.285 | 7/6 |
18 | 280.89 | |
19 | 296.495 | 19/16, 32/27 |
20 | 312.1 | |
21 | 327.705 | 29/24, 35/29 |
22 | 343.31 | 39/32 |
23 | 358.915 | 16/13 |
24 | 374.52 | 36/29, 41/33 |
25 | 390.125 | |
26 | 405.73 | 24/19, 43/34 |
27 | 421.335 | 37/29 |
28 | 436.94 | 9/7 |
29 | 452.545 | 13/10 |
30 | 468.15 | 21/16, 38/29 |
31 | 483.755 | 37/28, 41/31 |
32 | 499.36 | 4/3 |
33 | 514.965 | 31/23, 35/26, 39/29 |
34 | 530.57 | 19/14 |
35 | 546.175 | 37/27 |
36 | 561.78 | 18/13 |
37 | 577.385 | |
38 | 592.99 | 31/22, 38/27 |
39 | 608.595 | 27/19, 37/26 |
40 | 624.2 | 33/23 |
41 | 639.805 | 42/29 |
42 | 655.41 | 19/13, 35/24 |
43 | 671.015 | 28/19 |
44 | 686.62 | |
45 | 702.225 | 3/2 |
46 | 717.83 | |
47 | 733.435 | 29/19 |
48 | 749.04 | 37/24 |
49 | 764.645 | 14/9 |
50 | 780.25 | 11/7 |
51 | 795.855 | 19/12 |
52 | 811.461 | 8/5 |
53 | 827.066 | 29/18 |
54 | 842.671 | 13/8 |
55 | 858.276 | 23/14 |
56 | 873.881 | |
57 | 889.486 | |
58 | 905.091 | 27/16, 32/19 |
59 | 920.696 | |
60 | 936.301 | |
61 | 951.906 | 26/15 |
62 | 967.511 | 7/4 |
63 | 983.116 | 37/21 |
64 | 998.721 | 16/9, 41/23 |
65 | 1014.326 | |
66 | 1029.931 | 29/16 |
67 | 1045.536 | |
68 | 1061.141 | 24/13 |
69 | 1076.746 | 41/22 |
70 | 1092.351 | |
71 | 1107.956 | 36/19 |
72 | 1123.561 | |
73 | 1139.166 | 27/14, 29/15 |
74 | 1154.771 | 37/19, 39/20 |
75 | 1170.376 | |
76 | 1185.981 | |
77 | 1201.586 | 2/1 |
78 | 1217.191 | |
79 | 1232.796 | |
80 | 1248.401 | 37/18 |
81 | 1264.006 | 27/13 |
82 | 1279.611 | 23/11 |
83 | 1295.216 | 19/9 |
84 | 1310.821 | 32/15 |
85 | 1326.426 | 28/13 |
86 | 1342.031 | |
87 | 1357.636 | 35/16 |
88 | 1373.241 | 42/19 |
89 | 1388.846 | 29/13 |
90 | 1404.451 | 9/4 |
91 | 1420.056 | |
92 | 1435.661 | |
93 | 1451.266 | 37/16 |
94 | 1466.871 | 7/3 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.59 | +1.86 | +3.17 | +6.98 | +3.44 | +1.86 | +4.76 | +3.71 | -7.04 | -0.39 | +5.03 |
Relative (%) | +10.2 | +11.9 | +20.3 | +44.7 | +22.1 | +11.9 | +30.5 | +23.8 | -45.1 | -2.5 | +32.2 | |
Steps (reduced) |
77 (77) |
122 (28) |
154 (60) |
179 (85) |
199 (11) |
216 (28) |
231 (43) |
244 (56) |
255 (67) |
266 (78) |
276 (88) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +6.90 | +3.44 | -6.77 | +6.34 | -4.98 | +5.30 | +5.33 | -5.45 | +3.71 | +1.20 | +2.27 |
Relative (%) | +44.2 | +22.1 | -43.4 | +40.6 | -31.9 | +34.0 | +34.1 | -34.9 | +23.8 | +7.7 | +14.5 | |
Steps (reduced) |
285 (3) |
293 (11) |
300 (18) |
308 (26) |
314 (32) |
321 (39) |
327 (45) |
332 (50) |
338 (56) |
343 (61) |
348 (66) |