95ed7/3
Jump to navigation
Jump to search
Prime factorization
5 × 19
Step size
15.4407¢
Octave
78\95ed7/3 (1204.38¢)
Twelfth
123\95ed7/3 (1899.21¢)
Consistency limit
3
Distinct consistency limit
3
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 94ed7/3 | 95ed7/3 | 96ed7/3 → |
95 equal divisions of 7/3 (abbreviated 95ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 95 equal parts of about 15.4 ¢ each. Each step represents a frequency ratio of (7/3)1/95, or the 95th root of 7/3.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 15.4 | |
2 | 30.9 | |
3 | 46.3 | 37/36, 38/37, 39/38, 40/39 |
4 | 61.8 | 29/28 |
5 | 77.2 | 23/22 |
6 | 92.6 | 19/18, 39/37 |
7 | 108.1 | 33/31 |
8 | 123.5 | 43/40 |
9 | 139 | 13/12 |
10 | 154.4 | |
11 | 169.8 | 43/39 |
12 | 185.3 | |
13 | 200.7 | |
14 | 216.2 | 43/38 |
15 | 231.6 | |
16 | 247.1 | |
17 | 262.5 | 43/37 |
18 | 277.9 | 34/29 |
19 | 293.4 | |
20 | 308.8 | 37/31, 43/36 |
21 | 324.3 | |
22 | 339.7 | 28/23 |
23 | 355.1 | |
24 | 370.6 | |
25 | 386 | |
26 | 401.5 | 29/23 |
27 | 416.9 | 14/11 |
28 | 432.3 | |
29 | 447.8 | 22/17, 35/27 |
30 | 463.2 | 17/13 |
31 | 478.7 | 29/22 |
32 | 494.1 | |
33 | 509.5 | |
34 | 525 | 23/17, 42/31 |
35 | 540.4 | 41/30 |
36 | 555.9 | 40/29 |
37 | 571.3 | 39/28 |
38 | 586.7 | |
39 | 602.2 | 17/12 |
40 | 617.6 | 10/7 |
41 | 633.1 | |
42 | 648.5 | |
43 | 664 | |
44 | 679.4 | 43/29 |
45 | 694.8 | |
46 | 710.3 | |
47 | 725.7 | 41/27 |
48 | 741.2 | 43/28 |
49 | 756.6 | 31/20 |
50 | 772 | |
51 | 787.5 | |
52 | 802.9 | |
53 | 818.4 | |
54 | 833.8 | |
55 | 849.2 | 31/19 |
56 | 864.7 | 28/17, 33/20 |
57 | 880.1 | |
58 | 895.6 | |
59 | 911 | 22/13 |
60 | 926.4 | 29/17 |
61 | 941.9 | 31/18 |
62 | 957.3 | 33/19, 40/23 |
63 | 972.8 | |
64 | 988.2 | 23/13 |
65 | 1003.6 | |
66 | 1019.1 | 9/5 |
67 | 1034.5 | 20/11 |
68 | 1050 | 11/6 |
69 | 1065.4 | 37/20 |
70 | 1080.9 | 43/23 |
71 | 1096.3 | |
72 | 1111.7 | 19/10 |
73 | 1127.2 | 23/12 |
74 | 1142.6 | |
75 | 1158.1 | 39/20, 41/21, 43/22 |
76 | 1173.5 | |
77 | 1188.9 | |
78 | 1204.4 | |
79 | 1219.8 | |
80 | 1235.3 | |
81 | 1250.7 | |
82 | 1266.1 | |
83 | 1281.6 | |
84 | 1297 | 36/17 |
85 | 1312.5 | |
86 | 1327.9 | 28/13 |
87 | 1343.3 | |
88 | 1358.8 | |
89 | 1374.2 | 31/14, 42/19 |
90 | 1389.7 | 29/13 |
91 | 1405.1 | |
92 | 1420.5 | |
93 | 1436 | 39/17 |
94 | 1451.4 | |
95 | 1466.9 | 7/3 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +4.38 | -2.74 | -6.68 | -6.98 | +1.64 | -2.74 | -2.31 | -5.49 | -2.60 | +2.24 | +6.01 |
Relative (%) | +28.4 | -17.8 | -43.3 | -45.2 | +10.6 | -17.8 | -14.9 | -35.5 | -16.8 | +14.5 | +38.9 | |
Steps (reduced) |
78 (78) |
123 (28) |
155 (60) |
180 (85) |
201 (11) |
218 (28) |
233 (43) |
246 (56) |
258 (68) |
269 (79) |
279 (89) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +6.41 | +1.64 | +5.72 | +2.07 | +5.20 | -1.11 | -2.07 | +1.78 | -5.49 | +6.62 | +6.87 |
Relative (%) | +41.5 | +10.6 | +37.0 | +13.4 | +33.7 | -7.2 | -13.4 | +11.5 | -35.5 | +42.9 | +44.5 | |
Steps (reduced) |
288 (3) |
296 (11) |
304 (19) |
311 (26) |
318 (33) |
324 (39) |
330 (45) |
336 (51) |
341 (56) |
347 (62) |
352 (67) |