95ed7/3
Jump to navigation
Jump to search
Prime factorization
5 × 19
Step size
15.4407¢
Octave
78\95ed7/3 (1204.38¢)
Twelfth
123\95ed7/3 (1899.21¢)
Consistency limit
3
Distinct consistency limit
3
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 94ed7/3 | 95ed7/3 | 96ed7/3 → |
95 equal divisions of 7/3 (abbreviated 95ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 95 equal parts of about 15.4 ¢ each. Each step represents a frequency ratio of (7/3)1/95, or the 95th root of 7/3.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 15.441 | |
2 | 30.881 | |
3 | 46.322 | 37/36, 38/37, 39/38, 40/39 |
4 | 61.763 | 29/28 |
5 | 77.204 | 23/22 |
6 | 92.644 | 19/18, 39/37 |
7 | 108.085 | 33/31 |
8 | 123.526 | 43/40 |
9 | 138.967 | 13/12 |
10 | 154.407 | |
11 | 169.848 | 43/39 |
12 | 185.289 | |
13 | 200.73 | |
14 | 216.17 | 43/38 |
15 | 231.611 | |
16 | 247.052 | |
17 | 262.493 | 43/37 |
18 | 277.933 | 34/29 |
19 | 293.374 | |
20 | 308.815 | 37/31, 43/36 |
21 | 324.256 | |
22 | 339.696 | 28/23 |
23 | 355.137 | |
24 | 370.578 | |
25 | 386.019 | |
26 | 401.459 | 29/23 |
27 | 416.9 | 14/11 |
28 | 432.341 | |
29 | 447.782 | 22/17, 35/27 |
30 | 463.222 | 17/13 |
31 | 478.663 | 29/22 |
32 | 494.104 | |
33 | 509.545 | |
34 | 524.985 | 23/17, 42/31 |
35 | 540.426 | 41/30 |
36 | 555.867 | 40/29 |
37 | 571.308 | 39/28 |
38 | 586.748 | |
39 | 602.189 | 17/12 |
40 | 617.63 | 10/7 |
41 | 633.071 | |
42 | 648.511 | |
43 | 663.952 | |
44 | 679.393 | 43/29 |
45 | 694.834 | |
46 | 710.274 | |
47 | 725.715 | 41/27 |
48 | 741.156 | 43/28 |
49 | 756.597 | 31/20 |
50 | 772.037 | |
51 | 787.478 | |
52 | 802.919 | |
53 | 818.36 | |
54 | 833.8 | |
55 | 849.241 | 31/19 |
56 | 864.682 | 28/17, 33/20 |
57 | 880.123 | |
58 | 895.563 | |
59 | 911.004 | 22/13 |
60 | 926.445 | 29/17 |
61 | 941.886 | 31/18 |
62 | 957.326 | 33/19, 40/23 |
63 | 972.767 | |
64 | 988.208 | 23/13 |
65 | 1003.649 | |
66 | 1019.089 | 9/5 |
67 | 1034.53 | 20/11 |
68 | 1049.971 | 11/6 |
69 | 1065.411 | 37/20 |
70 | 1080.852 | 43/23 |
71 | 1096.293 | |
72 | 1111.734 | 19/10 |
73 | 1127.174 | 23/12 |
74 | 1142.615 | |
75 | 1158.056 | 39/20, 41/21, 43/22 |
76 | 1173.497 | |
77 | 1188.937 | |
78 | 1204.378 | |
79 | 1219.819 | |
80 | 1235.26 | |
81 | 1250.7 | |
82 | 1266.141 | |
83 | 1281.582 | |
84 | 1297.023 | 36/17 |
85 | 1312.463 | |
86 | 1327.904 | 28/13 |
87 | 1343.345 | |
88 | 1358.786 | |
89 | 1374.226 | 31/14, 42/19 |
90 | 1389.667 | 29/13 |
91 | 1405.108 | |
92 | 1420.549 | |
93 | 1435.989 | 39/17 |
94 | 1451.43 | |
95 | 1466.871 | 7/3 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +4.38 | -2.74 | -6.68 | -6.98 | +1.64 | -2.74 | -2.31 | -5.49 | -2.60 | +2.24 | +6.01 |
Relative (%) | +28.4 | -17.8 | -43.3 | -45.2 | +10.6 | -17.8 | -14.9 | -35.5 | -16.8 | +14.5 | +38.9 | |
Steps (reduced) |
78 (78) |
123 (28) |
155 (60) |
180 (85) |
201 (11) |
218 (28) |
233 (43) |
246 (56) |
258 (68) |
269 (79) |
279 (89) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +6.41 | +1.64 | +5.72 | +2.07 | +5.20 | -1.11 | -2.07 | +1.78 | -5.49 | +6.62 | +6.87 |
Relative (%) | +41.5 | +10.6 | +37.0 | +13.4 | +33.7 | -7.2 | -13.4 | +11.5 | -35.5 | +42.9 | +44.5 | |
Steps (reduced) |
288 (3) |
296 (11) |
304 (19) |
311 (26) |
318 (33) |
324 (39) |
330 (45) |
336 (51) |
341 (56) |
347 (62) |
352 (67) |