96ed7/3
Jump to navigation
Jump to search
Prime factorization
25 × 3
Step size
15.2799¢
Octave
79\96ed7/3 (1207.11¢)
Twelfth
124\96ed7/3 (1894.71¢) (→31\24ed7/3)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 95ed7/3 | 96ed7/3 | 97ed7/3 → |
96 equal divisions of 7/3 (abbreviated 96ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 96 equal parts of about 15.3 ¢ each. Each step represents a frequency ratio of (7/3)1/96, or the 96th root of 7/3.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 15.3 | |
2 | 30.6 | |
3 | 45.8 | 37/36 |
4 | 61.1 | 29/28 |
5 | 76.4 | |
6 | 91.7 | 39/37 |
7 | 107 | 33/31 |
8 | 122.2 | |
9 | 137.5 | 13/12 |
10 | 152.8 | 12/11 |
11 | 168.1 | 43/39 |
12 | 183.4 | |
13 | 198.6 | 37/33 |
14 | 213.9 | |
15 | 229.2 | |
16 | 244.5 | |
17 | 259.8 | 36/31, 43/37 |
18 | 275 | 34/29 |
19 | 290.3 | 13/11 |
20 | 305.6 | 37/31, 43/36 |
21 | 320.9 | |
22 | 336.2 | 17/14 |
23 | 351.4 | |
24 | 366.7 | |
25 | 382 | |
26 | 397.3 | 39/31 |
27 | 412.6 | |
28 | 427.8 | |
29 | 443.1 | |
30 | 458.4 | 30/23, 43/33 |
31 | 473.7 | |
32 | 489 | |
33 | 504.2 | |
34 | 519.5 | |
35 | 534.8 | |
36 | 550.1 | |
37 | 565.4 | 43/31 |
38 | 580.6 | 7/5 |
39 | 595.9 | |
40 | 611.2 | |
41 | 626.5 | 33/23 |
42 | 641.8 | 29/20 |
43 | 657 | 19/13 |
44 | 672.3 | 28/19 |
45 | 687.6 | |
46 | 702.9 | |
47 | 718.2 | |
48 | 733.4 | 29/19 |
49 | 748.7 | |
50 | 764 | |
51 | 779.3 | |
52 | 794.6 | 19/12 |
53 | 809.8 | |
54 | 825.1 | 37/23 |
55 | 840.4 | |
56 | 855.7 | |
57 | 871 | |
58 | 886.2 | 5/3 |
59 | 901.5 | |
60 | 916.8 | 17/10, 39/23 |
61 | 932.1 | |
62 | 947.4 | 19/11 |
63 | 962.6 | |
64 | 977.9 | |
65 | 993.2 | |
66 | 1008.5 | 34/19 |
67 | 1023.8 | |
68 | 1039 | 31/17 |
69 | 1054.3 | |
70 | 1069.6 | |
71 | 1084.9 | 43/23 |
72 | 1100.2 | |
73 | 1115.4 | |
74 | 1130.7 | |
75 | 1146 | 33/17 |
76 | 1161.3 | |
77 | 1176.6 | |
78 | 1191.8 | |
79 | 1207.1 | |
80 | 1222.4 | |
81 | 1237.7 | |
82 | 1253 | |
83 | 1268.2 | |
84 | 1283.5 | |
85 | 1298.8 | 36/17 |
86 | 1314.1 | |
87 | 1329.4 | 28/13, 41/19 |
88 | 1344.6 | 37/17 |
89 | 1359.9 | |
90 | 1375.2 | 31/14 |
91 | 1390.5 | 29/13 |
92 | 1405.8 | |
93 | 1421 | |
94 | 1436.3 | 39/17 |
95 | 1451.6 | |
96 | 1466.9 | 7/3 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +7.11 | -7.25 | -1.05 | -5.37 | -0.13 | -7.25 | +6.06 | +0.79 | +1.74 | +4.82 | +6.98 |
Relative (%) | +46.5 | -47.4 | -6.9 | -35.2 | -0.9 | -47.4 | +39.6 | +5.1 | +11.4 | +31.5 | +45.7 | |
Steps (reduced) |
79 (79) |
124 (28) |
157 (61) |
182 (86) |
203 (11) |
220 (28) |
236 (44) |
249 (57) |
261 (69) |
272 (80) |
282 (90) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +5.92 | -0.13 | +2.66 | -2.11 | -0.11 | -7.38 | +5.98 | -6.43 | +0.79 | -3.35 | -3.91 |
Relative (%) | +38.8 | -0.9 | +17.4 | -13.8 | -0.7 | -48.3 | +39.1 | -42.1 | +5.1 | -21.9 | -25.6 | |
Steps (reduced) |
291 (3) |
299 (11) |
307 (19) |
314 (26) |
321 (33) |
327 (39) |
334 (46) |
339 (51) |
345 (57) |
350 (62) |
355 (67) |