97ed7/3
Jump to navigation
Jump to search
Prime factorization
97 (prime)
Step size
15.1224¢
Octave
79\97ed7/3 (1194.67¢)
Twelfth
126\97ed7/3 (1905.42¢)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 96ed7/3 | 97ed7/3 | 98ed7/3 → |
97 equal divisions of 7/3 (abbreviated 97ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 97 equal parts of about 15.1 ¢ each. Each step represents a frequency ratio of (7/3)1/97, or the 97th root of 7/3.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 15.122 | |
2 | 30.245 | |
3 | 45.367 | 37/36, 38/37 |
4 | 60.49 | 29/28, 30/29 |
5 | 75.612 | 23/22 |
6 | 90.734 | |
7 | 105.857 | |
8 | 120.979 | 15/14, 44/41 |
9 | 136.101 | |
10 | 151.224 | |
11 | 166.346 | |
12 | 181.469 | |
13 | 196.591 | 28/25 |
14 | 211.713 | 26/23, 35/31 |
15 | 226.836 | 41/36 |
16 | 241.958 | |
17 | 257.08 | 29/25, 36/31 |
18 | 272.203 | 41/35 |
19 | 287.325 | 13/11 |
20 | 302.448 | 31/26, 44/37 |
21 | 317.57 | 6/5 |
22 | 332.692 | 23/19 |
23 | 347.815 | 11/9 |
24 | 362.937 | 37/30 |
25 | 378.06 | |
26 | 393.182 | |
27 | 408.304 | 19/15 |
28 | 423.427 | 23/18, 37/29 |
29 | 438.549 | |
30 | 453.671 | |
31 | 468.794 | 38/29 |
32 | 483.916 | 37/28, 41/31 |
33 | 499.039 | |
34 | 514.161 | 35/26 |
35 | 529.283 | 19/14 |
36 | 544.406 | 26/19 |
37 | 559.528 | |
38 | 574.65 | |
39 | 589.773 | |
40 | 604.895 | 17/12, 44/31 |
41 | 620.018 | |
42 | 635.14 | 13/9 |
43 | 650.262 | |
44 | 665.385 | 22/15, 25/17 |
45 | 680.507 | 37/25 |
46 | 695.63 | |
47 | 710.752 | |
48 | 725.874 | 35/23, 38/25 |
49 | 740.997 | 23/15 |
50 | 756.119 | |
51 | 771.241 | |
52 | 786.364 | 41/26 |
53 | 801.486 | 35/22 |
54 | 816.609 | |
55 | 831.731 | 21/13 |
56 | 846.853 | 31/19 |
57 | 861.976 | 23/14, 28/17 |
58 | 877.098 | |
59 | 892.22 | |
60 | 907.343 | |
61 | 922.465 | 29/17 |
62 | 937.588 | |
63 | 952.71 | 26/15 |
64 | 967.832 | |
65 | 982.955 | 30/17 |
66 | 998.077 | |
67 | 1013.199 | |
68 | 1028.322 | |
69 | 1043.444 | 42/23 |
70 | 1058.567 | 35/19 |
71 | 1073.689 | 13/7 |
72 | 1088.811 | |
73 | 1103.934 | 36/19 |
74 | 1119.056 | 21/11 |
75 | 1134.179 | |
76 | 1149.301 | 35/18 |
77 | 1164.423 | |
78 | 1179.546 | |
79 | 1194.668 | |
80 | 1209.79 | |
81 | 1224.913 | |
82 | 1240.035 | 43/21 |
83 | 1255.158 | 31/15 |
84 | 1270.28 | 25/12 |
85 | 1285.402 | |
86 | 1300.525 | 36/17 |
87 | 1315.647 | |
88 | 1330.769 | 41/19 |
89 | 1345.892 | 37/17 |
90 | 1361.014 | |
91 | 1376.137 | 31/14 |
92 | 1391.259 | 38/17 |
93 | 1406.381 | |
94 | 1421.504 | |
95 | 1436.626 | |
96 | 1451.749 | 44/19 |
97 | 1466.871 | 7/3 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -5.33 | +3.46 | +4.46 | -3.80 | -1.87 | +3.46 | -0.87 | +6.93 | +5.99 | +7.34 | -7.20 |
Relative (%) | -35.3 | +22.9 | +29.5 | -25.1 | -12.3 | +22.9 | -5.8 | +45.8 | +39.6 | +48.5 | -47.6 | |
Steps (reduced) |
79 (79) |
126 (29) |
159 (62) |
184 (87) |
205 (11) |
223 (29) |
238 (44) |
252 (58) |
264 (70) |
275 (81) |
284 (90) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +5.92 | -0.13 | +2.66 | -2.11 | -0.11 | -7.38 | +5.98 | -6.43 | +0.79 | -3.35 | -3.91 |
Relative (%) | +38.8 | -0.9 | +17.4 | -13.8 | -0.7 | -48.3 | +39.1 | -42.1 | +5.1 | -21.9 | -25.6 | |
Steps (reduced) |
291 (3) |
299 (11) |
307 (19) |
314 (26) |
321 (33) |
327 (39) |
334 (46) |
339 (51) |
345 (57) |
350 (62) |
355 (67) |