98ed7/3
Jump to navigation
Jump to search
Prime factorization
2 × 72
Step size
14.9681¢
Octave
80\98ed7/3 (1197.45¢) (→40\49ed7/3)
Twelfth
127\98ed7/3 (1900.94¢)
Consistency limit
6
Distinct consistency limit
6
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 97ed7/3 | 98ed7/3 | 99ed7/3 → |
98 equal divisions of 7/3 (abbreviated 98ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 98 equal parts of about 15 ¢ each. Each step represents a frequency ratio of (7/3)1/98, or the 98th root of 7/3.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 14.968 | |
2 | 29.936 | |
3 | 44.904 | 38/37, 39/38 |
4 | 59.872 | 29/28, 30/29 |
5 | 74.84 | |
6 | 89.808 | 39/37 |
7 | 104.776 | |
8 | 119.745 | 15/14 |
9 | 134.713 | 27/25 |
10 | 149.681 | 12/11 |
11 | 164.649 | 11/10 |
12 | 179.617 | 41/37 |
13 | 194.585 | 19/17, 28/25 |
14 | 209.553 | 35/31 |
15 | 224.521 | 33/29 |
16 | 239.489 | 31/27, 39/34 |
17 | 254.457 | 29/25 |
18 | 269.425 | |
19 | 284.393 | 33/28 |
20 | 299.361 | 25/21 |
21 | 314.329 | 6/5 |
22 | 329.298 | 23/19, 29/24 |
23 | 344.266 | |
24 | 359.234 | |
25 | 374.202 | 31/25, 36/29 |
26 | 389.17 | |
27 | 404.138 | 43/34 |
28 | 419.106 | 14/11 |
29 | 434.074 | 9/7 |
30 | 449.042 | 35/27 |
31 | 464.01 | 17/13 |
32 | 478.978 | 29/22, 33/25 |
33 | 493.946 | |
34 | 508.914 | |
35 | 523.882 | 23/17, 42/31 |
36 | 538.851 | 15/11 |
37 | 553.819 | 11/8 |
38 | 568.787 | 25/18, 43/31 |
39 | 583.755 | 7/5 |
40 | 598.723 | |
41 | 613.691 | |
42 | 628.659 | |
43 | 643.627 | 29/20, 42/29 |
44 | 658.595 | 19/13 |
45 | 673.563 | 31/21 |
46 | 688.531 | |
47 | 703.499 | 3/2 |
48 | 718.467 | |
49 | 733.435 | 26/17 |
50 | 748.404 | |
51 | 763.372 | 14/9 |
52 | 778.34 | |
53 | 793.308 | |
54 | 808.276 | |
55 | 823.244 | 29/18, 37/23 |
56 | 838.212 | |
57 | 853.18 | 18/11 |
58 | 868.148 | 33/20, 38/23 |
59 | 883.116 | 5/3 |
60 | 898.084 | 42/25 |
61 | 913.052 | 39/23 |
62 | 928.02 | |
63 | 942.988 | 31/18 |
64 | 957.957 | |
65 | 972.925 | |
66 | 987.893 | 23/13 |
67 | 1002.861 | 25/14, 41/23 |
68 | 1017.829 | 9/5 |
69 | 1032.797 | 20/11 |
70 | 1047.765 | 11/6 |
71 | 1062.733 | |
72 | 1077.701 | |
73 | 1092.669 | |
74 | 1107.637 | |
75 | 1122.605 | |
76 | 1137.573 | 27/14 |
77 | 1152.541 | 35/18, 37/19 |
78 | 1167.509 | |
79 | 1182.478 | |
80 | 1197.446 | |
81 | 1212.414 | |
82 | 1227.382 | |
83 | 1242.35 | 43/21 |
84 | 1257.318 | 31/15 |
85 | 1272.286 | 25/12 |
86 | 1287.254 | |
87 | 1302.222 | |
88 | 1317.19 | 15/7 |
89 | 1332.158 | 41/19 |
90 | 1347.126 | 37/17 |
91 | 1362.094 | |
92 | 1377.062 | 31/14 |
93 | 1392.031 | 38/17 |
94 | 1406.999 | |
95 | 1421.967 | 25/11 |
96 | 1436.935 | 39/17 |
97 | 1451.903 | |
98 | 1466.871 | 7/3 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.55 | -1.01 | -5.11 | -2.25 | -3.56 | -1.01 | +7.30 | -2.02 | -4.81 | -5.16 | -6.12 |
Relative (%) | -17.1 | -6.7 | -34.1 | -15.0 | -23.8 | -6.7 | +48.8 | -13.5 | -32.1 | -34.5 | -40.9 | |
Steps (reduced) |
80 (80) |
127 (29) |
160 (62) |
186 (88) |
207 (11) |
225 (29) |
241 (45) |
254 (58) |
266 (70) |
277 (81) |
287 (91) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +4.99 | -3.56 | -3.26 | +4.75 | +4.57 | -4.57 | +6.60 | -7.36 | -2.02 | +7.25 | +5.14 |
Relative (%) | +33.3 | -23.8 | -21.8 | +31.7 | +30.5 | -30.6 | +44.1 | -49.2 | -13.5 | +48.4 | +34.3 | |
Steps (reduced) |
297 (3) |
305 (11) |
313 (19) |
321 (27) |
328 (34) |
334 (40) |
341 (47) |
346 (52) |
352 (58) |
358 (64) |
363 (69) |