99ed7/3
Jump to navigation
Jump to search
Prime factorization
32 × 11
Step size
14.8169¢
Octave
81\99ed7/3 (1200.17¢) (→9\11ed7/3)
Twelfth
128\99ed7/3 (1896.56¢)
Consistency limit
8
Distinct consistency limit
8
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 98ed7/3 | 99ed7/3 | 100ed7/3 → |
99 equal divisions of 7/3 (abbreviated 99ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 99 equal parts of about 14.8 ¢ each. Each step represents a frequency ratio of (7/3)1/99, or the 99th root of 7/3.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 14.817 | |
2 | 29.634 | |
3 | 44.451 | 38/37, 39/38, 40/39, 41/40 |
4 | 59.268 | 29/28, 30/29, 31/30 |
5 | 74.084 | 24/23 |
6 | 88.901 | 20/19, 39/37, 41/39 |
7 | 103.718 | 17/16, 35/33 |
8 | 118.535 | 15/14 |
9 | 133.352 | 40/37, 41/38 |
10 | 148.169 | 12/11, 37/34 |
11 | 162.986 | 11/10 |
12 | 177.803 | 31/28, 41/37 |
13 | 192.619 | 19/17 |
14 | 207.436 | 44/39 |
15 | 222.253 | 25/22, 33/29 |
16 | 237.07 | 39/34 |
17 | 251.887 | 22/19, 37/32 |
18 | 266.704 | 7/6 |
19 | 281.521 | 20/17 |
20 | 296.338 | 19/16 |
21 | 311.154 | |
22 | 325.971 | 29/24, 35/29, 41/34 |
23 | 340.788 | 28/23, 39/32 |
24 | 355.605 | 43/35 |
25 | 370.422 | 31/25 |
26 | 385.239 | 5/4 |
27 | 400.056 | 29/23 |
28 | 414.873 | |
29 | 429.689 | 32/25, 41/32 |
30 | 444.506 | 22/17, 31/24 |
31 | 459.323 | 30/23, 43/33 |
32 | 474.14 | 25/19 |
33 | 488.957 | |
34 | 503.774 | |
35 | 518.591 | 31/23 |
36 | 533.408 | 34/25 |
37 | 548.224 | |
38 | 563.041 | |
39 | 577.858 | |
40 | 592.675 | 31/22 |
41 | 607.492 | 44/31 |
42 | 622.309 | 43/30 |
43 | 637.126 | |
44 | 651.943 | 35/24 |
45 | 666.76 | 25/17 |
46 | 681.576 | 43/29 |
47 | 696.393 | |
48 | 711.21 | |
49 | 726.027 | 35/23, 38/25 |
50 | 740.844 | 23/15, 43/28 |
51 | 755.661 | 17/11 |
52 | 770.478 | 25/16, 39/25 |
53 | 785.295 | |
54 | 800.111 | |
55 | 814.928 | 8/5 |
56 | 829.745 | |
57 | 844.562 | |
58 | 859.379 | 23/14 |
59 | 874.196 | |
60 | 889.013 | |
61 | 903.83 | 32/19 |
62 | 918.646 | 17/10 |
63 | 933.463 | 12/7 |
64 | 948.28 | 19/11 |
65 | 963.097 | |
66 | 977.914 | 44/25 |
67 | 992.731 | 39/22 |
68 | 1007.548 | 34/19, 43/24 |
69 | 1022.365 | |
70 | 1037.181 | 20/11 |
71 | 1051.998 | |
72 | 1066.815 | 37/20 |
73 | 1081.632 | 28/15, 43/23 |
74 | 1096.449 | 32/17 |
75 | 1111.266 | 19/10 |
76 | 1126.083 | 23/12 |
77 | 1140.9 | 29/15 |
78 | 1155.716 | 37/19, 39/20 |
79 | 1170.533 | |
80 | 1185.35 | |
81 | 1200.167 | 2/1 |
82 | 1214.984 | |
83 | 1229.801 | |
84 | 1244.618 | 39/19, 41/20 |
85 | 1259.435 | 29/14 |
86 | 1274.251 | |
87 | 1289.068 | 40/19 |
88 | 1303.885 | 17/8 |
89 | 1318.702 | 15/7 |
90 | 1333.519 | 41/19 |
91 | 1348.336 | 24/11, 37/17 |
92 | 1363.153 | 11/5 |
93 | 1377.97 | 31/14 |
94 | 1392.787 | 38/17 |
95 | 1407.603 | |
96 | 1422.42 | 25/11 |
97 | 1437.237 | 39/17 |
98 | 1452.054 | 37/16, 44/19 |
99 | 1466.871 | 7/3 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.17 | -5.39 | +0.33 | -0.74 | -5.23 | -5.39 | +0.50 | +4.03 | -0.57 | -2.59 | -5.06 |
Relative (%) | +1.1 | -36.4 | +2.3 | -5.0 | -35.3 | -36.4 | +3.4 | +27.2 | -3.9 | -17.5 | -34.2 | |
Steps (reduced) |
81 (81) |
128 (29) |
162 (63) |
188 (89) |
209 (11) |
227 (29) |
243 (45) |
257 (59) |
269 (71) |
280 (82) |
290 (92) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +4.54 | -5.23 | -6.14 | +0.67 | -0.57 | +4.19 | -0.51 | -0.41 | +4.03 | -2.43 | -5.30 |
Relative (%) | +30.6 | -35.3 | -41.4 | +4.5 | -3.8 | +28.3 | -3.4 | -2.7 | +27.2 | -16.4 | -35.8 | |
Steps (reduced) |
300 (3) |
308 (11) |
316 (19) |
324 (27) |
331 (34) |
338 (41) |
344 (47) |
350 (53) |
356 (59) |
361 (64) |
366 (69) |