100ed7/3
Jump to navigation
Jump to search
Prime factorization
22 × 52
Step size
14.6687¢
Octave
82\100ed7/3 (1202.83¢) (→41\50ed7/3)
Twelfth
130\100ed7/3 (1906.93¢) (→13\10ed7/3)
Consistency limit
5
Distinct consistency limit
5
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 99ed7/3 | 100ed7/3 | 101ed7/3 → |
100 equal divisions of 7/3 (abbreviated 100ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 100 equal parts of about 14.7 ¢ each. Each step represents a frequency ratio of (7/3)1/100, or the 100th root of 7/3.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 14.669 | |
2 | 29.337 | |
3 | 44.006 | 39/38, 40/39 |
4 | 58.675 | |
5 | 73.344 | |
6 | 88.012 | 20/19 |
7 | 102.681 | 35/33 |
8 | 117.35 | 15/14, 31/29 |
9 | 132.018 | |
10 | 146.687 | 25/23, 37/34 |
11 | 161.356 | 34/31 |
12 | 176.025 | 41/37 |
13 | 190.693 | |
14 | 205.362 | 9/8 |
15 | 220.031 | 25/22 |
16 | 234.699 | |
17 | 249.368 | 15/13 |
18 | 264.037 | |
19 | 278.705 | |
20 | 293.374 | 32/27, 45/38 |
21 | 308.043 | 37/31 |
22 | 322.712 | 41/34 |
23 | 337.38 | |
24 | 352.049 | |
25 | 366.718 | |
26 | 381.386 | |
27 | 396.055 | 44/35 |
28 | 410.724 | 19/15, 33/26 |
29 | 425.393 | |
30 | 440.061 | |
31 | 454.73 | 13/10 |
32 | 469.399 | 21/16 |
33 | 484.067 | 41/31 |
34 | 498.736 | 4/3 |
35 | 513.405 | 35/26 |
36 | 528.074 | 19/14 |
37 | 542.742 | 26/19 |
38 | 557.411 | |
39 | 572.08 | 39/28 |
40 | 586.748 | |
41 | 601.417 | 41/29 |
42 | 616.086 | 10/7 |
43 | 630.754 | |
44 | 645.423 | |
45 | 660.092 | |
46 | 674.761 | 34/23 |
47 | 689.429 | |
48 | 704.098 | 3/2 |
49 | 718.767 | |
50 | 733.435 | |
51 | 748.104 | 20/13 |
52 | 762.773 | 14/9 |
53 | 777.442 | |
54 | 792.11 | 30/19 |
55 | 806.779 | |
56 | 821.448 | 37/23, 45/28 |
57 | 836.116 | |
58 | 850.785 | |
59 | 865.454 | 33/20 |
60 | 880.123 | |
61 | 894.791 | |
62 | 909.46 | 22/13 |
63 | 924.129 | 29/17 |
64 | 938.797 | 43/25 |
65 | 953.466 | 26/15, 33/19 |
66 | 968.135 | 7/4 |
67 | 982.804 | |
68 | 997.472 | 16/9 |
69 | 1012.141 | |
70 | 1026.81 | 38/21 |
71 | 1041.478 | 31/17 |
72 | 1056.147 | 35/19 |
73 | 1070.816 | 13/7 |
74 | 1085.484 | 43/23 |
75 | 1100.153 | |
76 | 1114.822 | 40/21 |
77 | 1129.491 | |
78 | 1144.159 | |
79 | 1158.828 | 43/22 |
80 | 1173.497 | |
81 | 1188.165 | |
82 | 1202.834 | |
83 | 1217.503 | |
84 | 1232.172 | |
85 | 1246.84 | 39/19 |
86 | 1261.509 | |
87 | 1276.178 | 23/11 |
88 | 1290.846 | 40/19 |
89 | 1305.515 | |
90 | 1320.184 | 15/7 |
91 | 1334.853 | |
92 | 1349.521 | |
93 | 1364.19 | 11/5 |
94 | 1378.859 | |
95 | 1393.527 | |
96 | 1408.196 | |
97 | 1422.865 | 25/11 |
98 | 1437.533 | |
99 | 1452.202 | 44/19 |
100 | 1466.871 | 7/3 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +2.83 | +4.98 | +5.67 | +0.74 | -6.86 | +4.98 | -6.17 | -4.71 | +3.58 | -0.07 | -4.02 |
Relative (%) | +19.3 | +33.9 | +38.6 | +5.1 | -46.7 | +33.9 | -42.0 | -32.1 | +24.4 | -0.5 | -27.4 | |
Steps (reduced) |
82 (82) |
130 (30) |
164 (64) |
190 (90) |
211 (11) |
230 (30) |
245 (45) |
259 (59) |
272 (72) |
283 (83) |
293 (93) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +4.09 | -6.86 | +5.72 | -3.33 | -5.61 | -1.88 | +7.20 | +6.41 | -4.71 | +2.76 | -0.85 |
Relative (%) | +27.9 | -46.7 | +39.0 | -22.7 | -38.2 | -12.8 | +49.1 | +43.7 | -32.1 | +18.8 | -5.8 | |
Steps (reduced) |
303 (3) |
311 (11) |
320 (20) |
327 (27) |
334 (34) |
341 (41) |
348 (48) |
354 (54) |
359 (59) |
365 (65) |
370 (70) |