101ed7/3
Jump to navigation
Jump to search
Prime factorization
101 (prime)
Step size
14.5235¢
Octave
83\101ed7/3 (1205.45¢)
Twelfth
131\101ed7/3 (1902.58¢)
Consistency limit
3
Distinct consistency limit
3
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 100ed7/3 | 101ed7/3 | 102ed7/3 → |
101 equal divisions of 7/3 (abbreviated 101ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 101 equal parts of about 14.5 ¢ each. Each step represents a frequency ratio of (7/3)1/101, or the 101st root of 7/3.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 14.523 | |
2 | 29.047 | |
3 | 43.57 | 39/38, 42/41 |
4 | 58.094 | |
5 | 72.617 | |
6 | 87.141 | 41/39 |
7 | 101.664 | 35/33 |
8 | 116.188 | 31/29 |
9 | 130.711 | 14/13, 41/38 |
10 | 145.235 | 25/23 |
11 | 159.758 | 23/21, 45/41 |
12 | 174.282 | 21/19 |
13 | 188.805 | 39/35 |
14 | 203.329 | |
15 | 217.852 | 17/15 |
16 | 232.376 | |
17 | 246.899 | 15/13 |
18 | 261.423 | 43/37 |
19 | 275.946 | 27/23, 41/35 |
20 | 290.469 | 13/11, 45/38 |
21 | 304.993 | 37/31 |
22 | 319.516 | |
23 | 334.04 | 17/14 |
24 | 348.563 | 11/9 |
25 | 363.087 | |
26 | 377.61 | 41/33 |
27 | 392.134 | |
28 | 406.657 | |
29 | 421.181 | 37/29 |
30 | 435.704 | 9/7 |
31 | 450.228 | 35/27 |
32 | 464.751 | 17/13 |
33 | 479.275 | 33/25 |
34 | 493.798 | |
35 | 508.322 | |
36 | 522.845 | 23/17 |
37 | 537.369 | 15/11 |
38 | 551.892 | |
39 | 566.415 | 25/18, 43/31 |
40 | 580.939 | 7/5 |
41 | 595.462 | |
42 | 609.986 | 27/19 |
43 | 624.509 | 33/23 |
44 | 639.033 | 13/9 |
45 | 653.556 | |
46 | 668.08 | 25/17 |
47 | 682.603 | 43/29 |
48 | 697.127 | |
49 | 711.65 | |
50 | 726.174 | 35/23, 38/25 |
51 | 740.697 | 23/15 |
52 | 755.221 | 17/11 |
53 | 769.744 | 39/25 |
54 | 784.268 | 11/7 |
55 | 798.791 | 27/17 |
56 | 813.315 | |
57 | 827.838 | 21/13 |
58 | 842.362 | |
59 | 856.885 | 41/25 |
60 | 871.408 | 38/23 |
61 | 885.932 | 5/3 |
62 | 900.455 | 42/25 |
63 | 914.979 | 39/23 |
64 | 929.502 | |
65 | 944.026 | 19/11 |
66 | 958.549 | |
67 | 973.073 | |
68 | 987.596 | 23/13 |
69 | 1002.12 | 25/14, 41/23 |
70 | 1016.643 | 9/5 |
71 | 1031.167 | |
72 | 1045.69 | |
73 | 1060.214 | |
74 | 1074.737 | |
75 | 1089.261 | |
76 | 1103.784 | |
77 | 1118.308 | 21/11 |
78 | 1132.831 | 25/13 |
79 | 1147.354 | 33/17 |
80 | 1161.878 | 45/23 |
81 | 1176.401 | |
82 | 1190.925 | |
83 | 1205.448 | |
84 | 1219.972 | |
85 | 1234.495 | |
86 | 1249.019 | 35/17 |
87 | 1263.542 | 27/13 |
88 | 1278.066 | 23/11 |
89 | 1292.589 | 19/9 |
90 | 1307.113 | |
91 | 1321.636 | 15/7 |
92 | 1336.16 | 13/6 |
93 | 1350.683 | |
94 | 1365.207 | 11/5 |
95 | 1379.73 | |
96 | 1394.254 | 38/17 |
97 | 1408.777 | |
98 | 1423.3 | 25/11, 41/18 |
99 | 1437.824 | 39/17 |
100 | 1452.347 | |
101 | 1466.871 | 7/3 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +5.45 | +0.62 | -3.63 | +2.19 | +6.07 | +0.62 | +1.82 | +1.24 | -6.88 | +2.40 | -3.01 |
Relative (%) | +37.5 | +4.3 | -25.0 | +15.1 | +41.8 | +4.3 | +12.5 | +8.5 | -47.4 | +16.5 | -20.7 | |
Steps (reduced) |
83 (83) |
131 (30) |
165 (64) |
192 (91) |
214 (12) |
232 (30) |
248 (46) |
262 (60) |
274 (72) |
286 (84) |
296 (94) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.66 | +6.07 | +2.81 | -7.25 | +3.98 | +6.69 | +0.23 | -1.43 | +1.24 | -6.68 | +3.51 |
Relative (%) | +25.2 | +41.8 | +19.4 | -49.9 | +27.4 | +46.1 | +1.6 | -9.9 | +8.5 | -46.0 | +24.1 | |
Steps (reduced) |
306 (3) |
315 (12) |
323 (20) |
330 (27) |
338 (35) |
345 (42) |
351 (48) |
357 (54) |
363 (60) |
368 (65) |
374 (71) |