10ed7/3

From Xenharmonic Wiki
Jump to navigation Jump to search
← 9ed7/3 10ed7/3 11ed7/3 →
Prime factorization 2 × 5
Step size 146.687¢ 
Octave 8\10ed7/3 (1173.5¢) (→4\5ed7/3)
Twelfth 13\10ed7/3 (1906.93¢)
(convergent)
Consistency limit 6
Distinct consistency limit 2

10 equal divisions of 7/3 (abbreviated 10ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 10 equal parts of about 147⁠ ⁠¢ each. Each step represents a frequency ratio of (7/3)1/10, or the 10th root of 7/3.

Theory

This tuning tempers out 16/15 in the 5-limit; 28/27, 50/49, and 36/35 in the 7-limit; 22/21, 56/55, 77/75, and 55/54 in the 11-limit; 26/25, 52/49, 65/63, 66/65, 78/77, and 40/39 in the 13-limit; 34/33, 51/49, 52/51, 75/68, 77/68, and 51/50 in the 17-limit; 20/19, 64/57, 76/75, 77/76, and 39/38 in the 19-limit; 24/23, 70/69, and 46/45 in the 23-limit; 30/29, 58/57, and 32/29 in the 29-limit; 33/31, 63/62, 65/62, and 34/31 in the 31-limit; 38/37, 39/37, 75/74, 77/74, and 40/37 in the 37-limit; 42/41 and 44/41 in the 41-limit; 43/42, 43/41, and 44/43 in the 43-limit; 47/46, 48/47, and 47/45 in the 47-limit; 54/53, 56/53, and 55/53 in the 53-limit; 59/58, 60/59, 64/59, and 59/57 in the 59-limit; 62/61, 65/61, 66/61, and 63/61 in the 61-limit; 69/67, 72/67, and 70/67 in the 67-limit; 71/67, 71/69, 72/71, and 71/70 in the 71-limit; 73/68, 75/73, 76/73, 77/73, 78/73; and 74/73 in the 73-limit; and 81/79 in the 79-limit.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 146.7 11/10, 12/11, 13/12, 14/13, 15/14, 21/19
2 293.4 6/5, 7/6, 13/11, 20/17
3 440.1 9/7, 13/10, 14/11, 17/13, 19/15, 22/17
4 586.7 7/5, 10/7, 17/12, 18/13
5 733.4 3/2, 14/9, 17/11, 20/13
6 880.1 5/3, 18/11, 22/13
7 1026.8 9/5, 11/6, 20/11
8 1173.5 2/1
9 1320.2 13/6, 15/7, 17/8, 19/9
10 1466.9 7/3

Harmonics

Approximation of prime harmonics in 10ed7/3
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -26.5 +5.0 +0.7 +5.0 -44.1 -39.9 -64.3 +36.5 -0.9 +37.9 +69.1
Relative (%) -18.1 +3.4 +0.5 +3.4 -30.0 -27.2 -43.8 +24.9 -0.6 +25.8 +47.1
Steps
(reduced)
8
(8)
13
(3)
19
(9)
23
(3)
28
(8)
30
(0)
33
(3)
35
(5)
37
(7)
40
(0)
41
(1)
Approximation of prime harmonics in 10ed7/3
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) +56.2 +25.2 -57.3 -64.6 +20.8 -18.2 +70.8 +55.0 -45.3 +53.3 +63.2
Relative (%) +38.3 +17.2 -39.1 -44.0 +14.2 -12.4 +48.3 +37.5 -30.9 +36.3 +43.1
Steps
(reduced)
43
(3)
44
(4)
44
(4)
45
(5)
47
(7)
48
(8)
49
(9)
50
(0)
50
(0)
51
(1)
52
(2)