10ed7/3
Jump to navigation
Jump to search
Prime factorization
2 × 5
Step size
146.687¢
Octave
8\10ed7/3 (1173.5¢) (→4\5ed7/3)
Twelfth
13\10ed7/3 (1906.93¢)
(convergent)
Consistency limit
6
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 9ed7/3 | 10ed7/3 | 11ed7/3 → |
(convergent)
10 equal divisions of 7/3 (abbreviated 10ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 10 equal parts of about 147 ¢ each. Each step represents a frequency ratio of (7/3)1/10, or the 10th root of 7/3.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 146.687 | 11/10, 12/11, 13/12, 14/13, 15/14, 21/19 |
2 | 293.374 | 6/5, 7/6, 13/11, 20/17 |
3 | 440.061 | 9/7, 13/10, 14/11, 17/13, 19/15, 22/17 |
4 | 586.748 | 7/5, 10/7, 17/12, 18/13 |
5 | 733.435 | 3/2, 14/9, 17/11, 20/13 |
6 | 880.123 | 5/3, 18/11, 22/13 |
7 | 1026.81 | 9/5, 11/6, 20/11 |
8 | 1173.497 | 2/1 |
9 | 1320.184 | 13/6, 15/7, 17/8, 19/9 |
10 | 1466.871 | 7/3 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -26.5 | +5.0 | -53.0 | +0.7 | -21.5 | +5.0 | +67.2 | +10.0 | -25.8 | -44.1 | -48.0 |
Relative (%) | -18.1 | +3.4 | -36.1 | +0.5 | -14.7 | +3.4 | +45.8 | +6.8 | -17.6 | -30.0 | -32.7 | |
Steps (reduced) |
8 (8) |
13 (3) |
16 (6) |
19 (9) |
21 (1) |
23 (3) |
25 (5) |
26 (6) |
27 (7) |
28 (8) |
29 (9) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -39.9 | -21.5 | +5.7 | +40.7 | -64.3 | -16.5 | +36.5 | -52.3 | +10.0 | -70.6 | -0.9 |
Relative (%) | -27.2 | -14.7 | +3.9 | +27.7 | -43.8 | -11.3 | +24.9 | -35.6 | +6.8 | -48.1 | -0.6 | |
Steps (reduced) |
30 (0) |
31 (1) |
32 (2) |
33 (3) |
33 (3) |
34 (4) |
35 (5) |
35 (5) |
36 (6) |
36 (6) |
37 (7) |