11ed7/3
Jump to navigation
Jump to search
Prime factorization
11 (prime)
Step size
133.352¢
Octave
9\11ed7/3 (1200.17¢)
(convergent)
Twelfth
14\11ed7/3 (1866.93¢)
Consistency limit
8
Distinct consistency limit
3
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 10ed7/3 | 11ed7/3 | 12ed7/3 → |
(convergent)
11 equal divisions of 7/3 (abbreviated 11ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 11 equal parts of about 133 ¢ each. Each step represents a frequency ratio of (7/3)1/11, or the 11th root of 7/3.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 133.352 | 12/11, 13/12, 14/13, 15/14, 16/15, 17/16 |
2 | 266.704 | 7/6, 13/11, 15/13, 19/16, 20/17, 22/19 |
3 | 400.056 | 5/4, 14/11, 19/15 |
4 | 533.408 | 11/8, 15/11, 18/13, 19/14 |
5 | 666.76 | 13/9, 16/11, 19/13, 22/15 |
6 | 800.111 | 8/5, 11/7, 19/12, 21/13 |
7 | 933.463 | 12/7, 17/10, 19/11, 22/13 |
8 | 1066.815 | 11/6, 13/7, 15/8 |
9 | 1200.167 | 2/1 |
10 | 1333.519 | 13/6, 15/7, 17/8 |
11 | 1466.871 | 7/3, 19/8 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.2 | -35.0 | +0.3 | +14.1 | -34.9 | -35.0 | +0.5 | +63.3 | +14.2 | -17.4 | -34.7 |
Relative (%) | +0.1 | -26.3 | +0.3 | +10.6 | -26.1 | -26.3 | +0.4 | +47.5 | +10.7 | -13.1 | -26.0 | |
Steps (reduced) |
9 (9) |
14 (3) |
18 (7) |
21 (10) |
23 (1) |
25 (3) |
27 (5) |
29 (7) |
30 (8) |
31 (9) |
32 (10) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -39.9 | -34.9 | -21.0 | +0.7 | +29.1 | +63.5 | -30.1 | +14.4 | +63.3 | -17.2 | +39.2 |
Relative (%) | -29.9 | -26.1 | -15.7 | +0.5 | +21.8 | +47.6 | -22.6 | +10.8 | +47.5 | -12.9 | +29.4 | |
Steps (reduced) |
33 (0) |
34 (1) |
35 (2) |
36 (3) |
37 (4) |
38 (5) |
38 (5) |
39 (6) |
40 (7) |
40 (7) |
41 (8) |