12ed7/3

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 11ed7/312ed7/313ed7/3 →
Prime factorization 22 × 3
Step size 122.239¢ 
Octave 10\12ed7/3 (1222.39¢) (→5\6ed7/3)
Twelfth 16\12ed7/3 (1955.83¢) (→4\3ed7/3)
Consistency limit 5
Distinct consistency limit 2
Special properties

12 equal divisions of 7/3 (abbreviated 12ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 12 equal parts of about 122 ¢ each. Each step represents a frequency ratio of (7/3)1/12, or the 12th root of 7/3.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 122.239 15/14, 16/15
2 244.478 7/6, 8/7, 22/19
3 366.718 5/4
4 488.957 4/3, 17/13, 21/16
5 611.196 10/7
6 733.435 17/11
7 855.675
8 977.914 7/4, 16/9, 23/13
9 1100.153 15/8, 19/10
10 1222.392 2/1
11 1344.632 11/5, 15/7
12 1466.871 7/3

Harmonics

Approximation of harmonics in 12ed7/3
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +22.4 +53.9 +44.8 +25.2 -46.0 +53.9 -55.1 -14.5 +47.6 +4.8 -23.6
Relative (%) +18.3 +44.1 +36.6 +20.6 -37.6 +44.1 -45.0 -11.9 +38.9 +3.9 -19.3
Steps
(reduced)
10
(10)
16
(4)
20
(8)
23
(11)
25
(1)
28
(4)
29
(5)
31
(7)
33
(9)
34
(10)
35
(11)
Approximation of harmonics in 12ed7/3
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -39.9 -46.0 -43.2 -32.7 -15.4 +7.9 +36.5 -52.3 -14.5 +27.2 -49.7
Relative (%) -32.7 -37.6 -35.3 -26.7 -12.6 +6.5 +29.9 -42.8 -11.9 +22.3 -40.7
Steps
(reduced)
36
(0)
37
(1)
38
(2)
39
(3)
40
(4)
41
(5)
42
(6)
42
(6)
43
(7)
44
(8)
44
(8)