13ed7/3

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 12ed7/313ed7/314ed7/3 →
Prime factorization 13 (prime)
Step size 112.836¢ 
Octave 11\13ed7/3 (1241.2¢)
Twelfth 17\13ed7/3 (1918.22¢)
Consistency limit 3
Distinct consistency limit 3

13 equal divisions of 7/3 (abbreviated 13ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 13 equal parts of about 113 ¢ each. Each step represents a frequency ratio of (7/3)1/13, or the 13th root of 7/3.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 112.836 15/14
2 225.672
3 338.509 6/5, 11/9, 23/19
4 451.345 9/7, 17/13
5 564.181 7/5
6 677.017 3/2, 19/13, 22/15
7 789.854 11/7, 14/9
8 902.69 5/3
9 1015.526 9/5
10 1128.362 21/11
11 1241.198
12 1354.035 11/5
13 1466.871 7/3

Harmonics

Approximation of harmonics in 13ed7/3
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +41.2 +16.3 -30.4 +34.6 -55.4 +16.3 +10.8 +32.5 -37.0 +23.6 -14.2
Relative (%) +36.5 +14.4 -27.0 +30.7 -49.1 +14.4 +9.5 +28.8 -32.8 +20.9 -12.6
Steps
(reduced)
11
(11)
17
(4)
21
(8)
25
(12)
27
(1)
30
(4)
32
(6)
34
(8)
35
(9)
37
(11)
38
(12)
Approximation of harmonics in 13ed7/3
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -39.9 -55.4 +50.9 +52.0 -53.0 -39.1 -19.9 +4.2 +32.5 -48.0 -12.1
Relative (%) -35.4 -49.1 +45.1 +46.0 -47.0 -34.7 -17.6 +3.7 +28.8 -42.6 -10.8
Steps
(reduced)
39
(0)
40
(1)
42
(3)
43
(4)
43
(4)
44
(5)
45
(6)
46
(7)
47
(8)
47
(8)
48
(9)