14ed7/3

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 13ed7/314ed7/315ed7/3 →
Prime factorization 2 × 7
Step size 104.776¢ 
Octave 11\14ed7/3 (1152.54¢)
Twelfth 18\14ed7/3 (1885.98¢) (→9\7ed7/3)
Consistency limit 3
Distinct consistency limit 2

14 equal divisions of 7/3 (abbreviated 14ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 14 equal parts of about 105 ¢ each. Each step represents a frequency ratio of (7/3)1/14, or the 14th root of 7/3.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 104.776 14/13, 21/20
2 209.553 17/15, 19/17
3 314.329 23/19
4 419.106 9/7, 19/15
5 523.882 15/11, 23/17
6 628.659 10/7, 13/9
7 733.435 17/11, 20/13, 23/15
8 838.212 21/13
9 942.988 19/11
10 1047.765
11 1152.541
12 1257.318 23/11
13 1362.094 11/5, 13/6, 20/9
14 1466.871 7/3

Harmonics

Approximation of harmonics in 14ed7/3
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -47.5 -16.0 +9.9 +42.7 +41.3 -16.0 -37.6 -32.0 -4.8 +39.7 -6.1
Relative (%) -45.3 -15.2 +9.4 +40.7 +39.5 -15.2 -35.9 -30.5 -4.6 +37.9 -5.8
Steps
(reduced)
11
(11)
18
(4)
23
(9)
27
(13)
30
(2)
32
(4)
34
(6)
36
(8)
38
(10)
40
(12)
41
(13)
Approximation of harmonics in 14ed7/3
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -39.9 +41.3 +26.7 +19.7 +19.5 +25.4 +36.5 -52.3 -32.0 -7.7 +20.1
Relative (%) -38.1 +39.5 +25.5 +18.8 +18.6 +24.2 +34.9 -49.9 -30.5 -7.4 +19.2
Steps
(reduced)
42
(0)
44
(2)
45
(3)
46
(4)
47
(5)
48
(6)
49
(7)
49
(7)
50
(8)
51
(9)
52
(10)