9ed7/3

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 8ed7/3 9ed7/3 10ed7/3 →
Prime factorization 32
Step size 162.986¢ 
Octave 7\9ed7/3 (1140.9¢)
Twelfth 12\9ed7/3 (1955.83¢) (→4\3ed7/3)
Consistency limit 2
Distinct consistency limit 2

9 equal divisions of 7/3 (abbreviated 9ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 9 equal parts of about 163 ¢ each. Each step represents a frequency ratio of (7/3)1/9, or the 9th root of 7/3.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 162.986 11/10, 12/11, 13/12, 14/13, 19/17
2 325.971 6/5, 13/11, 17/14
3 488.957 13/10, 17/13
4 651.943 19/13
5 814.928 19/12
6 977.914 19/11
7 1140.9 19/10
8 1303.885 13/6, 15/7
9 1466.871 7/3

Harmonics

Approximation of harmonics in 9ed7/3
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -59.1 +53.9 +44.8 -15.6 -5.2 +53.9 -14.3 -55.2 -74.7 -76.7 -64.3
Relative (%) -36.3 +33.1 +27.5 -9.5 -3.2 +33.1 -8.8 -33.9 -45.8 -47.0 -39.5
Steps
(reduced)
7
(7)
12
(3)
15
(6)
17
(8)
19
(1)
21
(3)
22
(4)
23
(5)
24
(6)
25
(7)
26
(8)
Approximation of harmonics in 9ed7/3
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -39.9 -5.2 +38.3 -73.4 -15.4 +48.6 -45.0 +29.2 -55.2 +27.2 -49.7
Relative (%) -24.5 -3.2 +23.5 -45.0 -9.4 +29.8 -27.6 +17.9 -33.9 +16.7 -30.5
Steps
(reduced)
27
(0)
28
(1)
29
(2)
29
(2)
30
(3)
31
(4)
31
(4)
32
(5)
32
(5)
33
(6)
33
(6)