9ed7/3
Jump to navigation
Jump to search
Prime factorization
32
Step size
162.986¢
Octave
7\9ed7/3 (1140.9¢)
Twelfth
12\9ed7/3 (1955.83¢) (→4\3ed7/3)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 8ed7/3 | 9ed7/3 | 10ed7/3 → |
9 equal divisions of 7/3 (abbreviated 9ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 9 equal parts of about 163 ¢ each. Each step represents a frequency ratio of (7/3)1/9, or the 9th root of 7/3.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 162.986 | 11/10, 12/11, 13/12, 14/13, 19/17 |
2 | 325.971 | 6/5, 13/11, 17/14 |
3 | 488.957 | 13/10, 17/13 |
4 | 651.943 | 19/13 |
5 | 814.928 | 19/12 |
6 | 977.914 | 19/11 |
7 | 1140.9 | 19/10 |
8 | 1303.885 | 13/6, 15/7 |
9 | 1466.871 | 7/3 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -59.1 | +53.9 | +44.8 | -15.6 | -5.2 | +53.9 | -14.3 | -55.2 | -74.7 | -76.7 | -64.3 |
Relative (%) | -36.3 | +33.1 | +27.5 | -9.5 | -3.2 | +33.1 | -8.8 | -33.9 | -45.8 | -47.0 | -39.5 | |
Steps (reduced) |
7 (7) |
12 (3) |
15 (6) |
17 (8) |
19 (1) |
21 (3) |
22 (4) |
23 (5) |
24 (6) |
25 (7) |
26 (8) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -39.9 | -5.2 | +38.3 | -73.4 | -15.4 | +48.6 | -45.0 | +29.2 | -55.2 | +27.2 | -49.7 |
Relative (%) | -24.5 | -3.2 | +23.5 | -45.0 | -9.4 | +29.8 | -27.6 | +17.9 | -33.9 | +16.7 | -30.5 | |
Steps (reduced) |
27 (0) |
28 (1) |
29 (2) |
29 (2) |
30 (3) |
31 (4) |
31 (4) |
32 (5) |
32 (5) |
33 (6) |
33 (6) |