8ed7/3

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 7ed7/3 8ed7/3 9ed7/3 →
Prime factorization 23
Step size 183.359¢ 
Octave 7\8ed7/3 (1283.51¢)
Twelfth 10\8ed7/3 (1833.59¢) (→5\4ed7/3)
Consistency limit 2
Distinct consistency limit 2

8 equal divisions of 7/3 (abbreviated 8ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 8 equal parts of about 183⁠ ⁠¢ each. Each step represents a frequency ratio of (7/3)1/8, or the 8th root of 7/3.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 183.4 11/10, 12/11, 19/17
2 366.7 17/14
3 550.1 7/5, 18/13, 19/14
4 733.4 17/11
5 916.8 5/3, 17/10, 19/11
6 1100.2 13/7, 19/10
7 1283.5 15/7
8 1466.9 7/3

Harmonics

Approximation of harmonics in 8ed7/3
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +83.5 -68.4 -16.3 -35.9 +15.1 -68.4 +67.2 +46.6 +47.6 +65.9 -84.7
Relative (%) +45.5 -37.3 -8.9 -19.6 +8.3 -37.3 +36.6 +25.4 +25.9 +36.0 -46.2
Steps
(reduced)
7
(7)
10
(2)
13
(5)
15
(7)
17
(1)
18
(2)
20
(4)
21
(5)
22
(6)
23
(7)
23
(7)
Approximation of harmonics in 8ed7/3
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -39.9 +15.1 +79.1 -32.7 +45.7 -53.2 +36.5 -52.3 +46.6 -33.9 +72.5
Relative (%) -21.8 +8.3 +43.1 -17.8 +24.9 -29.0 +19.9 -28.5 +25.4 -18.5 +39.5
Steps
(reduced)
24
(0)
25
(1)
26
(2)
26
(2)
27
(3)
27
(3)
28
(4)
28
(4)
29
(5)
29
(5)
30
(6)