24ed7/3

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 23ed7/324ed7/325ed7/3 →
Prime factorization 23 × 3
Step size 61.1196¢ 
Octave 20\24ed7/3 (1222.39¢) (→5\6ed7/3)
Twelfth 31\24ed7/3 (1894.71¢)
Consistency limit 3
Distinct consistency limit 3
Special properties

24 equal divisions of 7/3 (abbreviated 24ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 24 equal parts of about 61.1 ¢ each. Each step represents a frequency ratio of (7/3)1/24, or the 24th root of 7/3.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 61.12 25/24, 26/25
2 122.239 14/13, 15/14
3 183.359 19/17, 21/19
4 244.478 15/13
5 305.598 6/5
6 366.718 21/17
7 427.837 9/7, 14/11, 23/18
8 488.957
9 550.077
10 611.196
11 672.316 22/15
12 733.435 23/15
13 794.555 11/7
14 855.675 18/11, 23/14
15 916.794 22/13
16 977.914 23/13
17 1039.034 11/6
18 1100.153 17/9
19 1161.273
20 1222.392
21 1283.512 19/9, 23/11, 25/12
22 1344.632 13/6
23 1405.751
24 1466.871 7/3

Harmonics

Approximation of harmonics in 24ed7/3
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +22.4 -7.2 -16.3 +25.2 +15.1 -7.2 +6.1 -14.5 -13.5 +4.8 -23.6
Relative (%) +36.6 -11.9 -26.7 +41.2 +24.8 -11.9 +9.9 -23.7 -22.2 +7.9 -38.6
Steps
(reduced)
20
(20)
31
(7)
39
(15)
46
(22)
51
(3)
55
(7)
59
(11)
62
(14)
65
(17)
68
(20)
70
(22)
Approximation of harmonics in 24ed7/3
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +21.2 +15.1 +17.9 +28.5 -15.4 +7.9 -24.6 +8.9 -14.5 +27.2 +11.4
Relative (%) +34.7 +24.8 +29.4 +46.5 -25.2 +12.9 -40.2 +14.5 -23.7 +44.5 +18.6
Steps
(reduced)
73
(1)
75
(3)
77
(5)
79
(7)
80
(8)
82
(10)
83
(11)
85
(13)
86
(14)
88
(16)
89
(17)