24ed7/3
Jump to navigation
Jump to search
Prime factorization
23 × 3
Step size
61.1196¢
Octave
20\24ed7/3 (1222.39¢) (→5\6ed7/3)
Twelfth
31\24ed7/3 (1894.71¢)
Consistency limit
3
Distinct consistency limit
3
Special properties
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 23ed7/3 | 24ed7/3 | 25ed7/3 → |
24 equal divisions of 7/3 (abbreviated 24ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 24 equal parts of about 61.1 ¢ each. Each step represents a frequency ratio of (7/3)1/24, or the 24th root of 7/3.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 61.1 | 25/24, 26/25 |
2 | 122.2 | 14/13, 15/14 |
3 | 183.4 | 19/17, 21/19 |
4 | 244.5 | 15/13 |
5 | 305.6 | 6/5 |
6 | 366.7 | 21/17 |
7 | 427.8 | 9/7, 14/11, 23/18 |
8 | 489 | |
9 | 550.1 | |
10 | 611.2 | |
11 | 672.3 | 22/15 |
12 | 733.4 | 23/15 |
13 | 794.6 | 11/7 |
14 | 855.7 | 18/11, 23/14 |
15 | 916.8 | 22/13 |
16 | 977.9 | 23/13 |
17 | 1039 | 11/6 |
18 | 1100.2 | 17/9 |
19 | 1161.3 | |
20 | 1222.4 | |
21 | 1283.5 | 19/9, 23/11, 25/12 |
22 | 1344.6 | 13/6 |
23 | 1405.8 | |
24 | 1466.9 | 7/3 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +22.4 | -7.2 | -16.3 | +25.2 | +15.1 | -7.2 | +6.1 | -14.5 | -13.5 | +4.8 | -23.6 |
Relative (%) | +36.6 | -11.9 | -26.7 | +41.2 | +24.8 | -11.9 | +9.9 | -23.7 | -22.2 | +7.9 | -38.6 | |
Steps (reduced) |
20 (20) |
31 (7) |
39 (15) |
46 (22) |
51 (3) |
55 (7) |
59 (11) |
62 (14) |
65 (17) |
68 (20) |
70 (22) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +21.2 | +15.1 | +17.9 | +28.5 | -15.4 | +7.9 | -24.6 | +8.9 | -14.5 | +27.2 | +11.4 |
Relative (%) | +34.7 | +24.8 | +29.4 | +46.5 | -25.2 | +12.9 | -40.2 | +14.5 | -23.7 | +44.5 | +18.6 | |
Steps (reduced) |
73 (1) |
75 (3) |
77 (5) |
79 (7) |
80 (8) |
82 (10) |
83 (11) |
85 (13) |
86 (14) |
88 (16) |
89 (17) |