25ed7/3
Jump to navigation
Jump to search
Prime factorization
52
Step size
58.6748¢
Octave
20\25ed7/3 (1173.5¢) (→4\5ed7/3)
Twelfth
32\25ed7/3 (1877.59¢)
Consistency limit
3
Distinct consistency limit
3
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 24ed7/3 | 25ed7/3 | 26ed7/3 → |
25 equal divisions of 7/3 (abbreviated 25ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 25 equal parts of about 58.7 ¢ each. Each step represents a frequency ratio of (7/3)1/25, or the 25th root of 7/3.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 58.7 | |
2 | 117.3 | 15/14 |
3 | 176 | 10/9 |
4 | 234.7 | |
5 | 293.4 | 13/11, 25/21 |
6 | 352 | |
7 | 410.7 | |
8 | 469.4 | 17/13 |
9 | 528.1 | 23/17 |
10 | 586.7 | 7/5 |
11 | 645.4 | 19/13 |
12 | 704.1 | 3/2 |
13 | 762.8 | 14/9, 17/11 |
14 | 821.4 | |
15 | 880.1 | 5/3 |
16 | 938.8 | 19/11 |
17 | 997.5 | 23/13, 25/14 |
18 | 1056.1 | |
19 | 1114.8 | |
20 | 1173.5 | |
21 | 1232.2 | |
22 | 1290.8 | 21/10 |
23 | 1349.5 | |
24 | 1408.2 | 9/4 |
25 | 1466.9 | 7/3 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -26.5 | -24.4 | +5.7 | -28.6 | +7.8 | -24.4 | -20.8 | +10.0 | +3.6 | +14.6 | -18.7 |
Relative (%) | -45.2 | -41.5 | +9.7 | -48.7 | +13.3 | -41.5 | -35.5 | +17.0 | +6.1 | +24.9 | -31.9 | |
Steps (reduced) |
20 (20) |
32 (7) |
41 (16) |
47 (22) |
53 (3) |
57 (7) |
61 (11) |
65 (15) |
68 (18) |
71 (21) |
73 (23) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +18.8 | +7.8 | +5.7 | +11.3 | +23.7 | -16.5 | +7.2 | -22.9 | +10.0 | -11.9 | +28.5 |
Relative (%) | +32.0 | +13.3 | +9.7 | +19.3 | +40.4 | -28.2 | +12.3 | -39.1 | +17.0 | -20.3 | +48.5 | |
Steps (reduced) |
76 (1) |
78 (3) |
80 (5) |
82 (7) |
84 (9) |
85 (10) |
87 (12) |
88 (13) |
90 (15) |
91 (16) |
93 (18) |