25ed7/3

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 24ed7/3 25ed7/3 26ed7/3 →
Prime factorization 52
Step size 58.6748¢ 
Octave 20\25ed7/3 (1173.5¢) (→4\5ed7/3)
Twelfth 32\25ed7/3 (1877.59¢)
Consistency limit 3
Distinct consistency limit 3

25 equal divisions of 7/3 (abbreviated 25ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 25 equal parts of about 58.7⁠ ⁠¢ each. Each step represents a frequency ratio of (7/3)1/25, or the 25th root of 7/3.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 58.7
2 117.3 15/14
3 176 10/9
4 234.7
5 293.4 13/11, 25/21
6 352
7 410.7
8 469.4 17/13
9 528.1 23/17
10 586.7 7/5
11 645.4 19/13
12 704.1 3/2
13 762.8 14/9, 17/11
14 821.4
15 880.1 5/3
16 938.8 19/11
17 997.5 23/13, 25/14
18 1056.1
19 1114.8
20 1173.5
21 1232.2
22 1290.8 21/10
23 1349.5
24 1408.2 9/4
25 1466.9 7/3

Harmonics

Approximation of harmonics in 25ed7/3
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -26.5 -24.4 +5.7 -28.6 +7.8 -24.4 -20.8 +10.0 +3.6 +14.6 -18.7
Relative (%) -45.2 -41.5 +9.7 -48.7 +13.3 -41.5 -35.5 +17.0 +6.1 +24.9 -31.9
Steps
(reduced)
20
(20)
32
(7)
41
(16)
47
(22)
53
(3)
57
(7)
61
(11)
65
(15)
68
(18)
71
(21)
73
(23)
Approximation of harmonics in 25ed7/3
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +18.8 +7.8 +5.7 +11.3 +23.7 -16.5 +7.2 -22.9 +10.0 -11.9 +28.5
Relative (%) +32.0 +13.3 +9.7 +19.3 +40.4 -28.2 +12.3 -39.1 +17.0 -20.3 +48.5
Steps
(reduced)
76
(1)
78
(3)
80
(5)
82
(7)
84
(9)
85
(10)
87
(12)
88
(13)
90
(15)
91
(16)
93
(18)