26ed7/3
Jump to navigation
Jump to search
Prime factorization
2 × 13
Step size
56.4181¢
Octave
21\26ed7/3 (1184.78¢)
Twelfth
34\26ed7/3 (1918.22¢) (→17\13ed7/3)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 25ed7/3 | 26ed7/3 | 27ed7/3 → |
26 equal divisions of 7/3 (abbreviated 26ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 26 equal parts of about 56.4 ¢ each. Each step represents a frequency ratio of (7/3)1/26, or the 26th root of 7/3. It corresponds to 21.2698edo.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 56.418 | |
2 | 112.836 | 15/14 |
3 | 169.254 | |
4 | 225.672 | 17/15 |
5 | 282.091 | 13/11 |
6 | 338.509 | 11/9, 17/14, 23/19 |
7 | 394.927 | 5/4, 24/19 |
8 | 451.345 | 22/17 |
9 | 507.763 | |
10 | 564.181 | 18/13 |
11 | 620.599 | |
12 | 677.017 | |
13 | 733.435 | 23/15, 26/17 |
14 | 789.854 | 11/7, 19/12 |
15 | 846.272 | 18/11 |
16 | 902.69 | 22/13 |
17 | 959.108 | 26/15 |
18 | 1015.526 | |
19 | 1071.944 | 13/7 |
20 | 1128.362 | 21/11, 23/12 |
21 | 1184.78 | |
22 | 1241.198 | |
23 | 1297.617 | |
24 | 1354.035 | |
25 | 1410.453 | |
26 | 1466.871 | 7/3 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -15.2 | +16.3 | +26.0 | -21.8 | +1.0 | +16.3 | +10.8 | -23.9 | +19.4 | +23.6 | -14.2 |
Relative (%) | -27.0 | +28.8 | +46.0 | -38.7 | +1.8 | +28.8 | +19.1 | -42.4 | +34.3 | +41.9 | -25.1 | |
Steps (reduced) |
21 (21) |
34 (8) |
43 (17) |
49 (23) |
55 (3) |
60 (8) |
64 (12) |
67 (15) |
71 (19) |
74 (22) |
76 (24) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +16.5 | +1.0 | -5.6 | -4.5 | +3.4 | +17.3 | -19.9 | +4.2 | -23.9 | +8.4 | -12.1 |
Relative (%) | +29.3 | +1.8 | -9.9 | -7.9 | +6.1 | +30.7 | -35.2 | +7.4 | -42.4 | +14.9 | -21.5 | |
Steps (reduced) |
79 (1) |
81 (3) |
83 (5) |
85 (7) |
87 (9) |
89 (11) |
90 (12) |
92 (14) |
93 (15) |
95 (17) |
96 (18) |