27ed7/3

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 26ed7/327ed7/328ed7/3 →
Prime factorization 33
Step size 54.3286¢ 
Octave 22\27ed7/3 (1195.23¢)
(semiconvergent)
Twelfth 35\27ed7/3 (1901.5¢)
(convergent)
Consistency limit 12
Distinct consistency limit 5

27 equal divisions of 7/3 (abbreviated 27ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 27 equal parts of about 54.3 ¢ each. Each step represents a frequency ratio of (7/3)1/27, or the 27th root of 7/3.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 54.329
2 108.657 15/14, 16/15, 17/16, 18/17
3 162.986 11/10, 21/19, 23/21
4 217.314 17/15, 25/22, 26/23
5 271.643 7/6, 20/17
6 325.971 6/5, 17/14, 23/19
7 380.3 5/4, 26/21
8 434.628 9/7, 23/18
9 488.957 4/3
10 543.286 11/8, 15/11, 26/19
11 597.614 17/12, 24/17
12 651.943 16/11, 19/13, 22/15
13 706.271 3/2
14 760.6 14/9, 17/11
15 814.928 8/5
16 869.257 23/14
17 923.585 12/7, 17/10
18 977.914 7/4, 23/13
19 1032.242 20/11
20 1086.571 15/8
21 1140.9
22 1195.228 2/1
23 1249.557
24 1303.885 17/8, 19/9
25 1358.214 11/5, 24/11
26 1412.542 9/4, 25/11
27 1466.871 7/3

Harmonics

Approximation of harmonics in 27ed7/3
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -4.8 -0.5 -9.5 -15.6 -5.2 -0.5 -14.3 -0.9 -20.3 -22.3 -10.0
Relative (%) -8.8 -0.8 -17.6 -28.6 -9.6 -0.8 -26.3 -1.7 -37.4 -41.1 -18.4
Steps
(reduced)
22
(22)
35
(8)
44
(17)
51
(24)
57
(3)
62
(8)
66
(12)
70
(16)
73
(19)
76
(22)
79
(25)
Approximation of harmonics in 27ed7/3
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +14.4 -5.2 -16.0 -19.1 -15.4 -5.7 +9.4 -25.1 -0.9 -27.1 +4.6
Relative (%) +26.5 -9.6 -29.5 -35.1 -28.3 -10.5 +17.2 -46.2 -1.7 -49.9 +8.4
Steps
(reduced)
82
(1)
84
(3)
86
(5)
88
(7)
90
(9)
92
(11)
94
(13)
95
(14)
97
(16)
98
(17)
100
(19)