28ed7/3

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 27ed7/3 28ed7/3 29ed7/3 →
Prime factorization 22 × 7
Step size 52.3882¢ 
Octave 23\28ed7/3 (1204.93¢)
Twelfth 36\28ed7/3 (1885.98¢) (→9\7ed7/3)
Consistency limit 6
Distinct consistency limit 3

28 equal divisions of 7/3 (abbreviated 28ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 28 equal parts of about 52.4⁠ ⁠¢ each. Each step represents a frequency ratio of (7/3)1/28, or the 28th root of 7/3.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 52.4
2 104.8 17/16
3 157.2 11/10, 12/11
4 209.6 26/23
5 261.9 7/6, 22/19
6 314.3 6/5
7 366.7 16/13
8 419.1 14/11, 19/15
9 471.5 17/13, 25/19
10 523.9 19/14, 23/17
11 576.3 7/5, 25/18
12 628.7 23/16
13 681
14 733.4 26/17
15 785.8 11/7, 19/12
16 838.2 13/8
17 890.6 5/3
18 943 12/7, 19/11
19 995.4 23/13, 25/14
20 1047.8 11/6
21 1100.2
22 1152.5
23 1204.9 2/1
24 1257.3
25 1309.7 15/7, 17/8
26 1362.1 11/5
27 1414.5 25/11
28 1466.9 7/3

Harmonics

Approximation of harmonics in 28ed7/3
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +4.9 -16.0 +9.9 -9.7 -11.0 -16.0 +14.8 +20.4 -4.8 -12.6 -6.1
Relative (%) +9.4 -30.5 +18.8 -18.6 -21.1 -30.5 +28.2 +39.0 -9.2 -24.1 -11.7
Steps
(reduced)
23
(23)
36
(8)
46
(18)
53
(25)
59
(3)
64
(8)
69
(13)
73
(17)
76
(20)
79
(23)
82
(26)
Approximation of harmonics in 28ed7/3
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +12.5 -11.0 -25.7 +19.7 +19.5 +25.4 -15.9 +0.1 +20.4 -7.7 +20.1
Relative (%) +23.8 -21.1 -49.1 +37.6 +37.3 +48.4 -30.3 +0.2 +39.0 -14.7 +38.4
Steps
(reduced)
85
(1)
87
(3)
89
(5)
92
(8)
94
(10)
96
(12)
97
(13)
99
(15)
101
(17)
102
(18)
104
(20)