29ed7/3

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 28ed7/3 29ed7/3 30ed7/3 →
Prime factorization 29 (prime)
Step size 50.5818¢ 
Octave 24\29ed7/3 (1213.96¢)
Twelfth 38\29ed7/3 (1922.11¢)
Consistency limit 3
Distinct consistency limit 3

29 equal divisions of 7/3 (abbreviated 29ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 29 equal parts of about 50.6 ¢ each. Each step represents a frequency ratio of (7/3)1/29, or the 29th root of 7/3.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 50.582
2 101.164
3 151.745 25/23
4 202.327 9/8, 19/17
5 252.909 15/13, 22/19
6 303.491
7 354.072
8 404.654 19/15
9 455.236 13/10, 17/13, 22/17
10 505.818 4/3
11 556.399
12 606.981
13 657.563 19/13, 22/15, 25/17
14 708.145 3/2
15 758.726 14/9, 17/11
16 809.308
17 859.89
18 910.472 17/10, 22/13, 27/16
19 961.053 7/4, 26/15
20 1011.635
21 1062.217 13/7
22 1112.799 19/10
23 1163.38
24 1213.962
25 1264.544
26 1315.126 15/7
27 1365.707 11/5
28 1416.289 25/11
29 1466.871 7/3

Harmonics

Approximation of harmonics in 29ed7/3
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +14.0 +20.2 -22.7 -4.3 -16.5 +20.2 -8.7 -10.3 +9.6 -3.6 -2.5
Relative (%) +27.6 +39.8 -44.8 -8.5 -32.6 +39.8 -17.2 -20.3 +19.1 -7.1 -5.0
Steps
(reduced)
24
(24)
38
(9)
47
(18)
55
(26)
61
(3)
67
(9)
71
(13)
75
(17)
79
(21)
82
(24)
85
(27)
Approximation of harmonics in 29ed7/3
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +10.7 -16.5 +15.8 +5.3 +1.5 +3.7 +11.2 +23.6 -10.3 +10.3 -16.0
Relative (%) +21.1 -32.6 +31.3 +10.4 +2.9 +7.3 +22.2 +46.7 -20.3 +20.5 -31.7
Steps
(reduced)
88
(1)
90
(3)
93
(6)
95
(8)
97
(10)
99
(12)
101
(14)
103
(16)
104
(17)
106
(19)
107
(20)