23ed7/3

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 22ed7/323ed7/324ed7/3 →
Prime factorization 23 (prime)
Step size 63.777¢ 
Octave 19\23ed7/3 (1211.76¢)
Twelfth 30\23ed7/3 (1913.31¢)
Consistency limit 6
Distinct consistency limit 3

23 equal divisions of 7/3 (abbreviated 23ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 23 equal parts of about 63.8 ¢ each. Each step represents a frequency ratio of (7/3)1/23, or the 23rd root of 7/3.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 63.777 23/22, 25/24
2 127.554 13/12, 14/13, 15/14
3 191.331 9/8, 10/9, 19/17
4 255.108 7/6, 15/13, 22/19
5 318.885 6/5, 23/19
6 382.662 5/4
7 446.439 9/7, 13/10, 22/17
8 510.216 4/3, 23/17
9 573.993 7/5, 18/13, 25/18
10 637.77 13/9
11 701.547 3/2
12 765.324 14/9, 17/11, 25/16
13 829.101 13/8, 21/13
14 892.878 5/3
15 956.655 7/4, 19/11
16 1020.432 9/5
17 1084.209 13/7, 15/8
18 1147.986
19 1211.763 2/1
20 1275.54 21/10, 23/11, 25/12
21 1339.317 13/6
22 1403.094 9/4
23 1466.871 7/3

Harmonics

Approximation of harmonics in 23ed7/3
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +11.8 +11.4 +23.5 +19.9 +23.1 +11.4 -28.5 +22.7 +31.6 -5.8 -28.9
Relative (%) +18.4 +17.8 +36.9 +31.2 +36.2 +17.8 -44.7 +35.6 +49.6 -9.1 -45.3
Steps
(reduced)
19
(19)
30
(7)
38
(15)
44
(21)
49
(3)
53
(7)
56
(10)
60
(14)
63
(17)
65
(19)
67
(21)
Approximation of harmonics in 23ed7/3
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +23.9 +23.1 +31.2 -16.7 +5.9 -29.3 +4.6 -20.4 +22.7 +5.9 -7.2
Relative (%) +37.4 +36.2 +49.0 -26.2 +9.2 -45.9 +7.3 -32.0 +35.6 +9.3 -11.3
Steps
(reduced)
70
(1)
72
(3)
74
(5)
75
(6)
77
(8)
78
(9)
80
(11)
81
(12)
83
(14)
84
(15)
85
(16)