93ed7/3
Jump to navigation
Jump to search
Prime factorization
3 × 31
Step size
15.7728¢
Octave
76\93ed7/3 (1198.73¢)
(semiconvergent)
Twelfth
121\93ed7/3 (1908.51¢)
Consistency limit
3
Distinct consistency limit
3
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 92ed7/3 | 93ed7/3 | 94ed7/3 → |
(semiconvergent)
93 equal divisions of 7/3 (abbreviated 93ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 93 equal parts of about 15.8 ¢ each. Each step represents a frequency ratio of (7/3)1/93, or the 93rd root of 7/3.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 15.773 | |
2 | 31.546 | |
3 | 47.318 | 36/35, 38/37 |
4 | 63.091 | 29/28 |
5 | 78.864 | 23/22 |
6 | 94.637 | |
7 | 110.41 | 33/31 |
8 | 126.182 | 14/13, 43/40 |
9 | 141.955 | |
10 | 157.728 | 34/31 |
11 | 173.501 | |
12 | 189.274 | 29/26, 39/35 |
13 | 205.046 | |
14 | 220.819 | |
15 | 236.592 | |
16 | 252.365 | 22/19, 37/32 |
17 | 268.138 | 7/6 |
18 | 283.91 | 20/17, 33/28 |
19 | 299.683 | 19/16, 25/21 |
20 | 315.456 | 6/5 |
21 | 331.229 | 23/19, 40/33 |
22 | 347.002 | |
23 | 362.775 | |
24 | 378.547 | |
25 | 394.32 | |
26 | 410.093 | 33/26 |
27 | 425.866 | |
28 | 441.639 | 31/24, 40/31 |
29 | 457.411 | 43/33 |
30 | 473.184 | |
31 | 488.957 | |
32 | 504.73 | |
33 | 520.503 | |
34 | 536.275 | |
35 | 552.048 | 11/8 |
36 | 567.821 | 25/18, 43/31 |
37 | 583.594 | 7/5 |
38 | 599.367 | 24/17, 41/29 |
39 | 615.139 | 10/7 |
40 | 630.912 | 23/16, 36/25 |
41 | 646.685 | 16/11 |
42 | 662.458 | 41/28 |
43 | 678.231 | 34/23 |
44 | 694.003 | |
45 | 709.776 | |
46 | 725.549 | |
47 | 741.322 | 43/28 |
48 | 757.095 | 31/20 |
49 | 772.867 | |
50 | 788.64 | 41/26 |
51 | 804.413 | |
52 | 820.186 | |
53 | 835.959 | |
54 | 851.731 | |
55 | 867.504 | 33/20, 38/23 |
56 | 883.277 | 5/3 |
57 | 899.05 | 37/22, 42/25 |
58 | 914.823 | |
59 | 930.596 | 12/7 |
60 | 946.368 | 19/11 |
61 | 962.141 | |
62 | 977.914 | |
63 | 993.687 | |
64 | 1009.46 | 34/19, 43/24 |
65 | 1025.232 | |
66 | 1041.005 | 31/17 |
67 | 1056.778 | |
68 | 1072.551 | 13/7 |
69 | 1088.324 | |
70 | 1104.096 | |
71 | 1119.869 | |
72 | 1135.642 | |
73 | 1151.415 | 35/18, 37/19 |
74 | 1167.188 | |
75 | 1182.96 | |
76 | 1198.733 | 2/1 |
77 | 1214.506 | |
78 | 1230.279 | |
79 | 1246.052 | |
80 | 1261.824 | 29/14 |
81 | 1277.597 | 23/11 |
82 | 1293.37 | |
83 | 1309.143 | |
84 | 1324.916 | 43/20 |
85 | 1340.688 | 13/6 |
86 | 1356.461 | |
87 | 1372.234 | |
88 | 1388.007 | 29/13 |
89 | 1403.78 | |
90 | 1419.552 | |
91 | 1435.325 | |
92 | 1451.098 | 37/16 |
93 | 1466.871 | 7/3 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -1.27 | +6.55 | -2.53 | +5.47 | +5.29 | +6.55 | -3.80 | -2.66 | +4.21 | -3.07 | +4.02 |
Relative (%) | -8.0 | +41.6 | -16.1 | +34.7 | +33.5 | +41.6 | -24.1 | -16.9 | +26.7 | -19.5 | +25.5 | |
Steps (reduced) |
76 (76) |
121 (28) |
152 (59) |
177 (84) |
197 (11) |
214 (28) |
228 (42) |
241 (55) |
253 (67) |
263 (77) |
273 (87) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +7.40 | +5.29 | -3.75 | -5.07 | +0.39 | -3.93 | -2.90 | +2.94 | -2.66 | -4.34 | -2.43 |
Relative (%) | +46.9 | +33.5 | -23.7 | -32.1 | +2.5 | -24.9 | -18.4 | +18.6 | -16.9 | -27.5 | -15.4 | |
Steps (reduced) |
282 (3) |
290 (11) |
297 (18) |
304 (25) |
311 (32) |
317 (38) |
323 (44) |
329 (50) |
334 (55) |
339 (60) |
344 (65) |