92ed7/3
Jump to navigation
Jump to search
Prime factorization
22 × 23
Step size
15.9442¢
Octave
75\92ed7/3 (1195.82¢)
Twelfth
119\92ed7/3 (1897.37¢)
Consistency limit
3
Distinct consistency limit
3
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 91ed7/3 | 92ed7/3 | 93ed7/3 → |
92 equal divisions of 7/3 (abbreviated 92ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 92 equal parts of about 15.9 ¢ each. Each step represents a frequency ratio of (7/3)1/92, or the 92nd root of 7/3.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 15.9 | |
2 | 31.9 | |
3 | 47.8 | 35/34, 38/37 |
4 | 63.8 | 28/27 |
5 | 79.7 | 22/21, 43/41 |
6 | 95.7 | 37/35 |
7 | 111.6 | |
8 | 127.6 | 43/40 |
9 | 143.5 | 38/35 |
10 | 159.4 | 23/21, 34/31 |
11 | 175.4 | 41/37 |
12 | 191.3 | 19/17, 29/26 |
13 | 207.3 | |
14 | 223.2 | |
15 | 239.2 | 39/34 |
16 | 255.1 | 29/25 |
17 | 271.1 | |
18 | 287 | 33/28 |
19 | 302.9 | 31/26 |
20 | 318.9 | |
21 | 334.8 | 40/33 |
22 | 350.8 | 38/31 |
23 | 366.7 | |
24 | 382.7 | |
25 | 398.6 | 39/31 |
26 | 414.6 | |
27 | 430.5 | |
28 | 446.4 | |
29 | 462.4 | 17/13, 30/23 |
30 | 478.3 | |
31 | 494.3 | |
32 | 510.2 | 39/29 |
33 | 526.2 | |
34 | 542.1 | 26/19, 41/30 |
35 | 558 | |
36 | 574 | |
37 | 589.9 | |
38 | 605.9 | |
39 | 621.8 | 43/30 |
40 | 637.8 | |
41 | 653.7 | |
42 | 669.7 | 25/17 |
43 | 685.6 | |
44 | 701.5 | 3/2 |
45 | 717.5 | |
46 | 733.4 | 26/17, 29/19 |
47 | 749.4 | |
48 | 765.3 | 14/9 |
49 | 781.3 | 11/7 |
50 | 797.2 | |
51 | 813.2 | |
52 | 829.1 | |
53 | 845 | 31/19 |
54 | 861 | 23/14 |
55 | 876.9 | |
56 | 892.9 | |
57 | 908.8 | |
58 | 924.8 | 29/17 |
59 | 940.7 | |
60 | 956.7 | 40/23 |
61 | 972.6 | |
62 | 988.5 | |
63 | 1004.5 | |
64 | 1020.4 | |
65 | 1036.4 | 20/11 |
66 | 1052.3 | |
67 | 1068.3 | |
68 | 1084.2 | 43/23 |
69 | 1100.2 | |
70 | 1116.1 | 40/21 |
71 | 1132 | 25/13 |
72 | 1148 | |
73 | 1163.9 | |
74 | 1179.9 | |
75 | 1195.8 | |
76 | 1211.8 | |
77 | 1227.7 | |
78 | 1243.7 | 39/19, 41/20 |
79 | 1259.6 | |
80 | 1275.5 | 23/11 |
81 | 1291.5 | |
82 | 1307.4 | |
83 | 1323.4 | 43/20 |
84 | 1339.3 | |
85 | 1355.3 | |
86 | 1371.2 | |
87 | 1387.1 | 29/13 |
88 | 1403.1 | 9/4 |
89 | 1419 | 34/15 |
90 | 1435 | 39/17 |
91 | 1450.9 | |
92 | 1466.9 | 7/3 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.18 | -4.59 | +7.58 | +3.93 | +7.17 | -4.59 | +3.40 | +6.77 | -0.25 | -5.81 | +2.99 |
Relative (%) | -26.2 | -28.8 | +47.6 | +24.6 | +45.0 | -28.8 | +21.3 | +42.4 | -1.6 | -36.5 | +18.8 | |
Steps (reduced) |
75 (75) |
119 (27) |
151 (59) |
175 (83) |
195 (11) |
211 (27) |
226 (42) |
239 (55) |
250 (66) |
260 (76) |
270 (86) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +7.92 | +7.17 | -0.66 | -0.78 | +5.87 | +2.58 | +4.65 | -4.43 | +6.77 | +5.95 | -7.23 |
Relative (%) | +49.7 | +45.0 | -4.1 | -4.9 | +36.8 | +16.2 | +29.1 | -27.8 | +42.4 | +37.3 | -45.3 | |
Steps (reduced) |
279 (3) |
287 (11) |
294 (18) |
301 (25) |
308 (32) |
314 (38) |
320 (44) |
325 (49) |
331 (55) |
336 (60) |
340 (64) |