91ed7/3
Jump to navigation
Jump to search
Prime factorization
7 × 13
Step size
16.1195¢
Octave
74\91ed7/3 (1192.84¢)
Twelfth
118\91ed7/3 (1902.1¢)
(semiconvergent)
Consistency limit
3
Distinct consistency limit
3
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 90ed7/3 | 91ed7/3 | 92ed7/3 → |
(semiconvergent)
91 equal divisions of 7/3 (abbreviated 91ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 91 equal parts of about 16.1 ¢ each. Each step represents a frequency ratio of (7/3)1/91, or the 91st root of 7/3.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 16.119 | |
2 | 32.239 | |
3 | 48.358 | |
4 | 64.478 | |
5 | 80.597 | 22/21 |
6 | 96.717 | 18/17, 37/35 |
7 | 112.836 | 31/29 |
8 | 128.956 | 14/13 |
9 | 145.075 | 25/23 |
10 | 161.195 | |
11 | 177.314 | 41/37 |
12 | 193.434 | 19/17 |
13 | 209.553 | 35/31 |
14 | 225.672 | 33/29 |
15 | 241.792 | 31/27 |
16 | 257.911 | 29/25 |
17 | 274.031 | 41/35 |
18 | 290.15 | |
19 | 306.27 | 37/31 |
20 | 322.389 | |
21 | 338.509 | 17/14 |
22 | 354.628 | 27/22 |
23 | 370.748 | 31/25 |
24 | 386.867 | |
25 | 402.987 | 29/23 |
26 | 419.106 | 37/29 |
27 | 435.225 | 9/7 |
28 | 451.345 | 35/27 |
29 | 467.464 | |
30 | 483.584 | 41/31 |
31 | 499.703 | |
32 | 515.823 | 31/23 |
33 | 531.942 | |
34 | 548.062 | 37/27 |
35 | 564.181 | 18/13 |
36 | 580.301 | 7/5 |
37 | 596.42 | 31/22 |
38 | 612.539 | |
39 | 628.659 | |
40 | 644.778 | |
41 | 660.898 | 22/15 |
42 | 677.017 | 31/21, 37/25 |
43 | 693.137 | |
44 | 709.256 | |
45 | 725.376 | 35/23, 41/27 |
46 | 741.495 | 23/15 |
47 | 757.615 | |
48 | 773.734 | |
49 | 789.854 | 30/19 |
50 | 805.973 | 35/22 |
51 | 822.092 | 37/23 |
52 | 838.212 | |
53 | 854.331 | 41/25 |
54 | 870.451 | |
55 | 886.57 | 5/3 |
56 | 902.69 | 37/22 |
57 | 918.809 | 17/10 |
58 | 934.929 | |
59 | 951.048 | |
60 | 967.168 | |
61 | 983.287 | 30/17, 37/21 |
62 | 999.407 | 41/23 |
63 | 1015.526 | 9/5 |
64 | 1031.645 | |
65 | 1047.765 | |
66 | 1063.884 | |
67 | 1080.004 | 41/22 |
68 | 1096.123 | |
69 | 1112.243 | 19/10 |
70 | 1128.362 | |
71 | 1144.482 | |
72 | 1160.601 | 41/21 |
73 | 1176.721 | |
74 | 1192.84 | |
75 | 1208.96 | |
76 | 1225.079 | |
77 | 1241.198 | |
78 | 1257.318 | 31/15 |
79 | 1273.437 | |
80 | 1289.557 | |
81 | 1305.676 | |
82 | 1321.796 | 15/7 |
83 | 1337.915 | 13/6 |
84 | 1354.035 | |
85 | 1370.154 | |
86 | 1386.274 | |
87 | 1402.393 | |
88 | 1418.513 | |
89 | 1434.632 | |
90 | 1450.751 | |
91 | 1466.871 | 7/3 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -7.16 | +0.14 | +1.80 | +2.35 | -7.02 | +0.14 | -5.36 | +0.28 | -4.81 | +7.50 | +1.94 |
Relative (%) | -44.4 | +0.9 | +11.2 | +14.6 | -43.5 | +0.9 | -33.3 | +1.8 | -29.8 | +46.5 | +12.0 | |
Steps (reduced) |
74 (74) |
118 (27) |
149 (58) |
173 (82) |
192 (10) |
209 (27) |
223 (41) |
236 (54) |
247 (65) |
258 (76) |
267 (85) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -7.68 | -7.02 | +2.49 | +3.60 | -4.64 | -6.88 | -3.76 | +4.15 | +0.28 | +0.34 | +3.98 |
Relative (%) | -47.6 | -43.5 | +15.5 | +22.3 | -28.8 | -42.7 | -23.3 | +25.8 | +1.8 | +2.1 | +24.7 | |
Steps (reduced) |
275 (2) |
283 (10) |
291 (18) |
298 (25) |
304 (31) |
310 (37) |
316 (43) |
322 (49) |
327 (54) |
332 (59) |
337 (64) |