90ed7/3
Jump to navigation
Jump to search
Prime factorization
2 × 32 × 5
Step size
16.2986¢
Octave
74\90ed7/3 (1206.09¢) (→37\45ed7/3)
Twelfth
117\90ed7/3 (1906.93¢) (→13\10ed7/3)
Consistency limit
3
Distinct consistency limit
3
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 89ed7/3 | 90ed7/3 | 91ed7/3 → |
90 equal divisions of 7/3 (abbreviated 90ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 90 equal parts of about 16.3 ¢ each. Each step represents a frequency ratio of (7/3)1/90, or the 90th root of 7/3.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 16.3 | |
2 | 32.6 | |
3 | 48.9 | 34/33, 35/34, 38/37 |
4 | 65.2 | 26/25, 28/27 |
5 | 81.5 | 22/21 |
6 | 97.8 | 37/35 |
7 | 114.1 | 31/29 |
8 | 130.4 | |
9 | 146.7 | 25/23, 37/34 |
10 | 163 | 11/10 |
11 | 179.3 | |
12 | 195.6 | 37/33 |
13 | 211.9 | 26/23, 35/31 |
14 | 228.2 | |
15 | 244.5 | 38/33 |
16 | 260.8 | |
17 | 277.1 | 34/29 |
18 | 293.4 | |
19 | 309.7 | |
20 | 326 | 35/29 |
21 | 342.3 | |
22 | 358.6 | |
23 | 374.9 | 31/25 |
24 | 391.2 | |
25 | 407.5 | 19/15 |
26 | 423.8 | 37/29 |
27 | 440.1 | |
28 | 456.4 | |
29 | 472.7 | 25/19 |
30 | 489 | |
31 | 505.3 | |
32 | 521.6 | 23/17, 27/20 |
33 | 537.9 | 15/11 |
34 | 554.2 | |
35 | 570.4 | |
36 | 586.7 | |
37 | 603 | |
38 | 619.3 | 10/7 |
39 | 635.6 | |
40 | 651.9 | |
41 | 668.2 | 25/17 |
42 | 684.5 | |
43 | 700.8 | 3/2 |
44 | 717.1 | |
45 | 733.4 | 26/17, 29/19 |
46 | 749.7 | |
47 | 766 | 14/9 |
48 | 782.3 | 11/7 |
49 | 798.6 | |
50 | 814.9 | |
51 | 831.2 | |
52 | 847.5 | 31/19 |
53 | 863.8 | |
54 | 880.1 | |
55 | 896.4 | |
56 | 912.7 | 39/23 |
57 | 929 | |
58 | 945.3 | 19/11 |
59 | 961.6 | |
60 | 977.9 | 37/21 |
61 | 994.2 | |
62 | 1010.5 | |
63 | 1026.8 | 38/21 |
64 | 1043.1 | |
65 | 1059.4 | 35/19 |
66 | 1075.7 | |
67 | 1092 | |
68 | 1108.3 | |
69 | 1124.6 | |
70 | 1140.9 | 29/15 |
71 | 1157.2 | |
72 | 1173.5 | |
73 | 1189.8 | |
74 | 1206.1 | |
75 | 1222.4 | |
76 | 1238.7 | |
77 | 1255 | 31/15 |
78 | 1271.3 | |
79 | 1287.6 | |
80 | 1303.9 | |
81 | 1320.2 | 15/7 |
82 | 1336.5 | |
83 | 1352.8 | |
84 | 1369.1 | |
85 | 1385.4 | |
86 | 1401.7 | 9/4 |
87 | 1418 | 34/15 |
88 | 1434.3 | |
89 | 1450.6 | |
90 | 1466.9 | 7/3 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +6.09 | +4.98 | -4.11 | +0.74 | -5.23 | +4.98 | +1.98 | -6.34 | +6.83 | +4.82 | +0.87 |
Relative (%) | +37.4 | +30.5 | -25.2 | +4.5 | -32.1 | +30.5 | +12.2 | -38.9 | +41.9 | +29.6 | +5.3 | |
Steps (reduced) |
74 (74) |
117 (27) |
147 (57) |
171 (81) |
190 (10) |
207 (27) |
221 (41) |
233 (53) |
245 (65) |
255 (75) |
264 (84) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -7.32 | -5.23 | +5.72 | +8.08 | +0.91 | -0.25 | +3.94 | -3.37 | -6.34 | -5.39 | -0.85 |
Relative (%) | -44.9 | -32.1 | +35.1 | +49.6 | +5.6 | -1.5 | +24.2 | -20.7 | -38.9 | -33.1 | -5.2 | |
Steps (reduced) |
272 (2) |
280 (10) |
288 (18) |
295 (25) |
301 (31) |
307 (37) |
313 (43) |
318 (48) |
323 (53) |
328 (58) |
333 (63) |