90ed7/3
Jump to navigation
Jump to search
Prime factorization
2 × 32 × 5
Step size
16.2986¢
Octave
74\90ed7/3 (1206.09¢) (→37\45ed7/3)
Twelfth
117\90ed7/3 (1906.93¢) (→13\10ed7/3)
Consistency limit
3
Distinct consistency limit
3
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 89ed7/3 | 90ed7/3 | 91ed7/3 → |
90 equal divisions of 7/3 (abbreviated 90ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 90 equal parts of about 16.3 ¢ each. Each step represents a frequency ratio of (7/3)1/90, or the 90th root of 7/3.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 16.299 | |
2 | 32.597 | |
3 | 48.896 | 34/33, 35/34, 38/37 |
4 | 65.194 | 26/25, 28/27 |
5 | 81.493 | 22/21 |
6 | 97.791 | 37/35 |
7 | 114.09 | 31/29 |
8 | 130.389 | |
9 | 146.687 | 25/23, 37/34 |
10 | 162.986 | 11/10 |
11 | 179.284 | |
12 | 195.583 | 37/33 |
13 | 211.881 | 26/23, 35/31 |
14 | 228.18 | |
15 | 244.478 | 38/33 |
16 | 260.777 | |
17 | 277.076 | 34/29 |
18 | 293.374 | |
19 | 309.673 | |
20 | 325.971 | 35/29 |
21 | 342.27 | |
22 | 358.568 | |
23 | 374.867 | 31/25 |
24 | 391.166 | |
25 | 407.464 | 19/15 |
26 | 423.763 | 37/29 |
27 | 440.061 | |
28 | 456.36 | |
29 | 472.658 | 25/19 |
30 | 488.957 | |
31 | 505.256 | |
32 | 521.554 | 23/17, 27/20 |
33 | 537.853 | 15/11 |
34 | 554.151 | |
35 | 570.45 | |
36 | 586.748 | |
37 | 603.047 | |
38 | 619.345 | 10/7 |
39 | 635.644 | |
40 | 651.943 | |
41 | 668.241 | 25/17 |
42 | 684.54 | |
43 | 700.838 | 3/2 |
44 | 717.137 | |
45 | 733.435 | 26/17, 29/19 |
46 | 749.734 | |
47 | 766.033 | 14/9 |
48 | 782.331 | 11/7 |
49 | 798.63 | |
50 | 814.928 | |
51 | 831.227 | |
52 | 847.525 | 31/19 |
53 | 863.824 | |
54 | 880.123 | |
55 | 896.421 | |
56 | 912.72 | 39/23 |
57 | 929.018 | |
58 | 945.317 | 19/11 |
59 | 961.615 | |
60 | 977.914 | 37/21 |
61 | 994.213 | |
62 | 1010.511 | |
63 | 1026.81 | 38/21 |
64 | 1043.108 | |
65 | 1059.407 | 35/19 |
66 | 1075.705 | |
67 | 1092.004 | |
68 | 1108.302 | |
69 | 1124.601 | |
70 | 1140.9 | 29/15 |
71 | 1157.198 | |
72 | 1173.497 | |
73 | 1189.795 | |
74 | 1206.094 | |
75 | 1222.392 | |
76 | 1238.691 | |
77 | 1254.99 | 31/15 |
78 | 1271.288 | |
79 | 1287.587 | |
80 | 1303.885 | |
81 | 1320.184 | 15/7 |
82 | 1336.482 | |
83 | 1352.781 | |
84 | 1369.08 | |
85 | 1385.378 | |
86 | 1401.677 | 9/4 |
87 | 1417.975 | 34/15 |
88 | 1434.274 | |
89 | 1450.572 | |
90 | 1466.871 | 7/3 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +6.09 | +4.98 | -4.11 | +0.74 | -5.23 | +4.98 | +1.98 | -6.34 | +6.83 | +4.82 | +0.87 |
Relative (%) | +37.4 | +30.5 | -25.2 | +4.5 | -32.1 | +30.5 | +12.2 | -38.9 | +41.9 | +29.6 | +5.3 | |
Steps (reduced) |
74 (74) |
117 (27) |
147 (57) |
171 (81) |
190 (10) |
207 (27) |
221 (41) |
233 (53) |
245 (65) |
255 (75) |
264 (84) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -7.32 | -5.23 | +5.72 | +8.08 | +0.91 | -0.25 | +3.94 | -3.37 | -6.34 | -5.39 | -0.85 |
Relative (%) | -44.9 | -32.1 | +35.1 | +49.6 | +5.6 | -1.5 | +24.2 | -20.7 | -38.9 | -33.1 | -5.2 | |
Steps (reduced) |
272 (2) |
280 (10) |
288 (18) |
295 (25) |
301 (31) |
307 (37) |
313 (43) |
318 (48) |
323 (53) |
328 (58) |
333 (63) |