89ed7/3
Jump to navigation
Jump to search
Prime factorization
89 (prime)
Step size
16.4817¢
Octave
73\89ed7/3 (1203.16¢)
Twelfth
115\89ed7/3 (1895.39¢)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 88ed7/3 | 89ed7/3 | 90ed7/3 → |
89 equal divisions of 7/3 (abbreviated 89ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 89 equal parts of about 16.5 ¢ each. Each step represents a frequency ratio of (7/3)1/89, or the 89th root of 7/3.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 16.5 | |
2 | 33 | |
3 | 49.4 | 36/35, 37/36 |
4 | 65.9 | 26/25 |
5 | 82.4 | |
6 | 98.9 | 37/35 |
7 | 115.4 | 31/29 |
8 | 131.9 | 41/38 |
9 | 148.3 | 12/11 |
10 | 164.8 | 11/10 |
11 | 181.3 | |
12 | 197.8 | 28/25, 37/33 |
13 | 214.3 | 26/23 |
14 | 230.7 | |
15 | 247.2 | 15/13 |
16 | 263.7 | |
17 | 280.2 | 20/17 |
18 | 296.7 | |
19 | 313.2 | 6/5 |
20 | 329.6 | 23/19, 29/24 |
21 | 346.1 | |
22 | 362.6 | 37/30 |
23 | 379.1 | |
24 | 395.6 | |
25 | 412 | 19/15, 33/26 |
26 | 428.5 | |
27 | 445 | 22/17, 31/24 |
28 | 461.5 | 30/23 |
29 | 478 | 29/22, 33/25 |
30 | 494.5 | |
31 | 510.9 | |
32 | 527.4 | 19/14 |
33 | 543.9 | 26/19 |
34 | 560.4 | |
35 | 576.9 | |
36 | 593.3 | 31/22 |
37 | 609.8 | 37/26 |
38 | 626.3 | 33/23 |
39 | 642.8 | 29/20 |
40 | 659.3 | 19/13, 41/28 |
41 | 675.7 | |
42 | 692.2 | |
43 | 708.7 | |
44 | 725.2 | 35/23, 38/25 |
45 | 741.7 | 23/15 |
46 | 758.2 | 31/20 |
47 | 774.6 | 36/23 |
48 | 791.1 | 30/19, 41/26 |
49 | 807.6 | |
50 | 824.1 | 37/23 |
51 | 840.6 | |
52 | 857 | 23/14, 41/25 |
53 | 873.5 | |
54 | 890 | |
55 | 906.5 | |
56 | 923 | 29/17 |
57 | 939.5 | |
58 | 955.9 | 33/19 |
59 | 972.4 | |
60 | 988.9 | 23/13 |
61 | 1005.4 | 25/14 |
62 | 1021.9 | |
63 | 1038.3 | 31/17 |
64 | 1054.8 | 35/19 |
65 | 1071.3 | 13/7 |
66 | 1087.8 | |
67 | 1104.3 | 36/19 |
68 | 1120.8 | |
69 | 1137.2 | |
70 | 1153.7 | 35/18, 37/19 |
71 | 1170.2 | |
72 | 1186.7 | |
73 | 1203.2 | |
74 | 1219.6 | |
75 | 1236.1 | |
76 | 1252.6 | |
77 | 1269.1 | 25/12 |
78 | 1285.6 | |
79 | 1302.1 | |
80 | 1318.5 | 15/7 |
81 | 1335 | |
82 | 1351.5 | 24/11 |
83 | 1368 | |
84 | 1384.5 | |
85 | 1400.9 | |
86 | 1417.4 | |
87 | 1433.9 | |
88 | 1450.4 | 30/13 |
89 | 1466.9 | 7/3 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.16 | -6.56 | +6.33 | -0.91 | -3.40 | -6.56 | -6.99 | +3.36 | +2.26 | +2.07 | -0.23 |
Relative (%) | +19.2 | -39.8 | +38.4 | -5.5 | -20.6 | -39.8 | -42.4 | +20.4 | +13.7 | +12.6 | -1.4 | |
Steps (reduced) |
73 (73) |
115 (26) |
146 (57) |
169 (80) |
188 (10) |
204 (26) |
218 (40) |
231 (53) |
242 (64) |
252 (74) |
261 (83) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -6.95 | -3.40 | -7.47 | -3.83 | +6.59 | +6.53 | -4.67 | +5.42 | +3.36 | +5.23 | -5.80 |
Relative (%) | -42.2 | -20.6 | -45.3 | -23.2 | +40.0 | +39.6 | -28.3 | +32.9 | +20.4 | +31.8 | -35.2 | |
Steps (reduced) |
269 (2) |
277 (10) |
284 (17) |
291 (24) |
298 (31) |
304 (37) |
309 (42) |
315 (48) |
320 (53) |
325 (58) |
329 (62) |