88ed7/3
Jump to navigation
Jump to search
Prime factorization
23 × 11
Step size
16.669¢
Octave
72\88ed7/3 (1200.17¢) (→9\11ed7/3)
Twelfth
114\88ed7/3 (1900.26¢) (→57\44ed7/3)
Consistency limit
18
Distinct consistency limit
10
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 87ed7/3 | 88ed7/3 | 89ed7/3 → |
88 equal divisions of 7/3 (abbreviated 88ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 88 equal parts of about 16.7 ¢ each. Each step represents a frequency ratio of (7/3)1/88, or the 88th root of 7/3.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 16.669 | |
2 | 33.338 | |
3 | 50.007 | 34/33, 35/34, 36/35, 37/36 |
4 | 66.676 | 26/25, 27/26 |
5 | 83.345 | 21/20, 22/21 |
6 | 100.014 | 18/17, 35/33 |
7 | 116.683 | 15/14, 31/29 |
8 | 133.352 | 27/25, 40/37, 41/38 |
9 | 150.021 | 12/11 |
10 | 166.69 | 11/10 |
11 | 183.359 | 10/9 |
12 | 200.028 | 37/33 |
13 | 216.697 | 17/15, 42/37 |
14 | 233.366 | 8/7 |
15 | 250.035 | 15/13, 37/32 |
16 | 266.704 | 7/6 |
17 | 283.373 | 20/17, 33/28 |
18 | 300.042 | 19/16, 25/21 |
19 | 316.711 | 6/5 |
20 | 333.38 | 17/14, 23/19, 40/33 |
21 | 350.049 | 11/9, 38/31 |
22 | 366.718 | 21/17 |
23 | 383.387 | |
24 | 400.056 | 29/23, 34/27 |
25 | 416.725 | 14/11 |
26 | 433.394 | 9/7 |
27 | 450.063 | 35/27 |
28 | 466.732 | 17/13, 38/29 |
29 | 483.401 | 33/25, 37/28, 41/31 |
30 | 500.07 | 4/3 |
31 | 516.739 | 27/20, 31/23, 35/26 |
32 | 533.408 | 34/25 |
33 | 550.077 | 11/8 |
34 | 566.746 | 25/18 |
35 | 583.415 | 7/5 |
36 | 600.084 | 41/29 |
37 | 616.753 | 10/7 |
38 | 633.422 | 36/25 |
39 | 650.091 | 16/11 |
40 | 666.76 | 25/17 |
41 | 683.428 | |
42 | 700.097 | 3/2 |
43 | 716.766 | |
44 | 733.435 | 26/17, 29/19 |
45 | 750.104 | 37/24 |
46 | 766.773 | 14/9 |
47 | 783.442 | 11/7 |
48 | 800.111 | 27/17 |
49 | 816.78 | |
50 | 833.449 | 34/21 |
51 | 850.118 | 18/11, 31/19 |
52 | 866.787 | 33/20, 38/23 |
53 | 883.456 | 5/3 |
54 | 900.125 | 32/19, 37/22, 42/25 |
55 | 916.794 | 17/10 |
56 | 933.463 | 12/7 |
57 | 950.132 | 26/15 |
58 | 966.801 | 7/4 |
59 | 983.47 | 30/17 |
60 | 1000.139 | 41/23 |
61 | 1016.808 | 9/5 |
62 | 1033.477 | 20/11 |
63 | 1050.146 | 11/6 |
64 | 1066.815 | 37/20 |
65 | 1083.484 | |
66 | 1100.153 | 17/9 |
67 | 1116.822 | 21/11, 40/21 |
68 | 1133.491 | 25/13 |
69 | 1150.16 | 33/17, 35/18 |
70 | 1166.829 | |
71 | 1183.498 | |
72 | 1200.167 | 2/1 |
73 | 1216.836 | |
74 | 1233.505 | |
75 | 1250.174 | 35/17, 37/18 |
76 | 1266.843 | 27/13 |
77 | 1283.512 | 21/10 |
78 | 1300.181 | 36/17 |
79 | 1316.85 | 15/7 |
80 | 1333.519 | 41/19 |
81 | 1350.188 | 24/11 |
82 | 1366.857 | 11/5 |
83 | 1383.526 | 20/9 |
84 | 1400.195 | |
85 | 1416.864 | 34/15 |
86 | 1433.533 | 16/7 |
87 | 1450.202 | 30/13, 37/16 |
88 | 1466.871 | 7/3 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.17 | -1.69 | +0.33 | -2.59 | -1.52 | -1.69 | +0.50 | -3.38 | -2.43 | -0.74 | -1.36 |
Relative (%) | +1.0 | -10.1 | +2.0 | -15.6 | -9.1 | -10.1 | +3.0 | -20.3 | -14.6 | -4.4 | -8.1 | |
Steps (reduced) |
72 (72) |
114 (26) |
144 (56) |
167 (79) |
186 (10) |
202 (26) |
216 (40) |
228 (52) |
239 (63) |
249 (73) |
258 (82) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -6.58 | -1.52 | -4.28 | +0.67 | -4.27 | -3.21 | +3.20 | -2.26 | -3.38 | -0.57 | +5.82 |
Relative (%) | -39.5 | -9.1 | -25.7 | +4.0 | -25.6 | -19.3 | +19.2 | -13.5 | -20.3 | -3.4 | +34.9 | |
Steps (reduced) |
266 (2) |
274 (10) |
281 (17) |
288 (24) |
294 (30) |
300 (36) |
306 (42) |
311 (47) |
316 (52) |
321 (57) |
326 (62) |