87ed7/3
Jump to navigation
Jump to search
Prime factorization
3 × 29
Step size
16.8606¢
Octave
71\87ed7/3 (1197.1¢)
Twelfth
113\87ed7/3 (1905.25¢)
Consistency limit
3
Distinct consistency limit
3
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 86ed7/3 | 87ed7/3 | 88ed7/3 → |
87 equal divisions of 7/3 (abbreviated 87ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 87 equal parts of about 16.9 ¢ each. Each step represents a frequency ratio of (7/3)1/87, or the 87th root of 7/3.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 16.9 | |
2 | 33.7 | |
3 | 50.6 | 34/33, 35/34, 36/35 |
4 | 67.4 | 26/25 |
5 | 84.3 | 41/39 |
6 | 101.2 | 18/17, 35/33 |
7 | 118 | 15/14, 31/29 |
8 | 134.9 | |
9 | 151.7 | 12/11 |
10 | 168.6 | |
11 | 185.5 | 39/35 |
12 | 202.3 | |
13 | 219.2 | 17/15, 25/22 |
14 | 236 | 39/34 |
15 | 252.9 | 22/19 |
16 | 269.8 | 7/6 |
17 | 286.6 | 13/11, 33/28 |
18 | 303.5 | 37/31 |
19 | 320.4 | |
20 | 337.2 | 17/14 |
21 | 354.1 | |
22 | 370.9 | |
23 | 387.8 | 5/4 |
24 | 404.7 | 24/19 |
25 | 421.5 | 23/18, 37/29 |
26 | 438.4 | |
27 | 455.2 | 13/10 |
28 | 472.1 | |
29 | 489 | |
30 | 505.8 | |
31 | 522.7 | 23/17 |
32 | 539.5 | 15/11, 41/30 |
33 | 556.4 | 29/21 |
34 | 573.3 | 39/28 |
35 | 590.1 | |
36 | 607 | |
37 | 623.8 | 33/23 |
38 | 640.7 | |
39 | 657.6 | 19/13, 41/28 |
40 | 674.4 | 31/21, 34/23 |
41 | 691.3 | |
42 | 708.1 | |
43 | 725 | 35/23, 38/25 |
44 | 741.9 | 23/15 |
45 | 758.7 | |
46 | 775.6 | 36/23 |
47 | 792.4 | 30/19 |
48 | 809.3 | |
49 | 826.2 | 29/18 |
50 | 843 | 13/8 |
51 | 859.9 | 23/14 |
52 | 876.8 | |
53 | 893.6 | |
54 | 910.5 | 22/13 |
55 | 927.3 | 29/17, 41/24 |
56 | 944.2 | 19/11 |
57 | 961.1 | |
58 | 977.9 | 37/21 |
59 | 994.8 | |
60 | 1011.6 | |
61 | 1028.5 | |
62 | 1045.4 | |
63 | 1062.2 | 24/13 |
64 | 1079.1 | 28/15, 41/22 |
65 | 1095.9 | |
66 | 1112.8 | 19/10 |
67 | 1129.7 | 25/13 |
68 | 1146.5 | 33/17 |
69 | 1163.4 | |
70 | 1180.2 | |
71 | 1197.1 | 2/1 |
72 | 1214 | |
73 | 1230.8 | |
74 | 1247.7 | 35/17, 37/18, 39/19 |
75 | 1264.5 | |
76 | 1281.4 | |
77 | 1298.3 | 36/17 |
78 | 1315.1 | |
79 | 1332 | 41/19 |
80 | 1348.8 | 24/11, 37/17 |
81 | 1365.7 | 11/5 |
82 | 1382.6 | |
83 | 1399.4 | |
84 | 1416.3 | 34/15 |
85 | 1433.1 | |
86 | 1450 | 30/13 |
87 | 1466.9 | 7/3 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.90 | +3.29 | -5.80 | -4.32 | +0.39 | +3.29 | +8.17 | +6.58 | -7.22 | -3.61 | -2.51 |
Relative (%) | -17.2 | +19.5 | -34.4 | -25.6 | +2.3 | +19.5 | +48.4 | +39.0 | -42.8 | -21.4 | -14.9 | |
Steps (reduced) |
71 (71) |
113 (26) |
142 (55) |
165 (78) |
184 (10) |
200 (26) |
214 (40) |
226 (52) |
236 (62) |
246 (72) |
255 (81) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -6.19 | +0.39 | -1.03 | +5.27 | +1.47 | +3.68 | -5.62 | +6.75 | +6.58 | -6.51 | +0.83 |
Relative (%) | -36.7 | +2.3 | -6.1 | +31.2 | +8.7 | +21.8 | -33.3 | +40.0 | +39.0 | -38.6 | +4.9 | |
Steps (reduced) |
263 (2) |
271 (10) |
278 (17) |
285 (24) |
291 (30) |
297 (36) |
302 (41) |
308 (47) |
313 (52) |
317 (56) |
322 (61) |