86ed7/3
Jump to navigation
Jump to search
Prime factorization
2 × 43
Step size
17.0566¢
Octave
70\86ed7/3 (1193.96¢) (→35\43ed7/3)
Twelfth
112\86ed7/3 (1910.34¢) (→56\43ed7/3)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 85ed7/3 | 86ed7/3 | 87ed7/3 → |
86 equal divisions of 7/3 (abbreviated 86ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 86 equal parts of about 17.1 ¢ each. Each step represents a frequency ratio of (7/3)1/86, or the 86th root of 7/3.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 17.1 | |
2 | 34.1 | |
3 | 51.2 | 34/33, 35/34, 36/35 |
4 | 68.2 | 25/24, 26/25 |
5 | 85.3 | 41/39 |
6 | 102.3 | 35/33 |
7 | 119.4 | 15/14 |
8 | 136.5 | 13/12 |
9 | 153.5 | 12/11 |
10 | 170.6 | |
11 | 187.6 | 39/35 |
12 | 204.7 | |
13 | 221.7 | 25/22, 33/29 |
14 | 238.8 | 39/34 |
15 | 255.8 | |
16 | 272.9 | 34/29, 41/35 |
17 | 290 | 13/11 |
18 | 307 | 37/31 |
19 | 324.1 | 35/29, 41/34 |
20 | 341.1 | 28/23 |
21 | 358.2 | |
22 | 375.2 | 36/29, 41/33 |
23 | 392.3 | |
24 | 409.4 | 19/15 |
25 | 426.4 | |
26 | 443.5 | |
27 | 460.5 | 30/23 |
28 | 477.6 | |
29 | 494.6 | |
30 | 511.7 | 39/29 |
31 | 528.8 | 19/14 |
32 | 545.8 | |
33 | 562.9 | |
34 | 579.9 | |
35 | 597 | 41/29 |
36 | 614 | |
37 | 631.1 | |
38 | 648.2 | |
39 | 665.2 | |
40 | 682.3 | |
41 | 699.3 | |
42 | 716.4 | |
43 | 733.4 | 29/19 |
44 | 750.5 | |
45 | 767.5 | |
46 | 784.6 | |
47 | 801.7 | |
48 | 818.7 | |
49 | 835.8 | |
50 | 852.8 | |
51 | 869.9 | 38/23 |
52 | 886.9 | |
53 | 904 | |
54 | 921.1 | |
55 | 938.1 | |
56 | 955.2 | 33/19 |
57 | 972.2 | |
58 | 989.3 | 23/13 |
59 | 1006.3 | 34/19 |
60 | 1023.4 | |
61 | 1040.5 | 31/17 |
62 | 1057.5 | 35/19 |
63 | 1074.6 | |
64 | 1091.6 | |
65 | 1108.7 | 36/19 |
66 | 1125.7 | 23/12 |
67 | 1142.8 | 29/15 |
68 | 1159.9 | |
69 | 1176.9 | |
70 | 1194 | |
71 | 1211 | |
72 | 1228.1 | |
73 | 1245.1 | 37/18, 39/19 |
74 | 1262.2 | 29/14 |
75 | 1279.2 | 23/11 |
76 | 1296.3 | 36/17 |
77 | 1313.4 | |
78 | 1330.4 | 28/13, 41/19 |
79 | 1347.5 | 37/17 |
80 | 1364.5 | 11/5 |
81 | 1381.6 | |
82 | 1398.6 | |
83 | 1415.7 | 34/15 |
84 | 1432.8 | |
85 | 1449.8 | 30/13 |
86 | 1466.9 | 7/3 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -6.04 | +8.39 | +4.99 | -6.08 | +2.35 | +8.39 | -1.05 | -0.28 | +4.94 | -6.55 | -3.68 |
Relative (%) | -35.4 | +49.2 | +29.2 | -35.7 | +13.8 | +49.2 | -6.2 | -1.6 | +29.0 | -38.4 | -21.6 | |
Steps (reduced) |
70 (70) |
112 (26) |
141 (55) |
163 (77) |
182 (10) |
198 (26) |
211 (39) |
223 (51) |
234 (62) |
243 (71) |
252 (80) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -5.80 | +2.35 | +2.31 | -7.08 | +7.36 | -6.31 | +2.42 | -1.10 | -0.28 | +4.47 | -4.26 |
Relative (%) | -34.0 | +13.8 | +13.5 | -41.5 | +43.1 | -37.0 | +14.2 | -6.4 | -1.6 | +26.2 | -25.0 | |
Steps (reduced) |
260 (2) |
268 (10) |
275 (17) |
281 (23) |
288 (30) |
293 (35) |
299 (41) |
304 (46) |
309 (51) |
314 (56) |
318 (60) |