47ed7/3

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 46ed7/3 47ed7/3 48ed7/3 →
Prime factorization 47 (prime)
Step size 31.21¢ 
Octave 38\47ed7/3 (1185.98¢)
Twelfth 61\47ed7/3 (1903.81¢)
Consistency limit 2
Distinct consistency limit 2

47 equal divisions of 7/3 (abbreviated 47ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 47 equal parts of about 31.2⁠ ⁠¢ each. Each step represents a frequency ratio of (7/3)1/47, or the 47th root of 7/3.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 31.2
2 62.4 26/25, 31/30
3 93.6 18/17, 19/18
4 124.8 14/13, 15/14, 29/27
5 156.1 23/21
6 187.3 19/17
7 218.5 17/15, 25/22
8 249.7 15/13, 22/19
9 280.9 27/23
10 312.1 6/5
11 343.3 11/9
12 374.5 31/25
13 405.7 19/15, 29/23
14 436.9 9/7
15 468.2 17/13
16 499.4
17 530.6 19/14
18 561.8 18/13, 29/21
19 593 31/22
20 624.2
21 655.4 19/13
22 686.6
23 717.8
24 749 17/11
25 780.3 11/7
26 811.5
27 842.7 31/19
28 873.9
29 905.1 22/13
30 936.3 31/18
31 967.5
32 998.7 25/14
33 1029.9
34 1061.1
35 1092.4
36 1123.6 21/11
37 1154.8
38 1186
39 1217.2
40 1248.4
41 1279.6 23/11
42 1310.8
43 1342 13/6
44 1373.2 31/14
45 1404.5
46 1435.7
47 1466.9 7/3

Harmonics

Approximation of harmonics in 47ed7/3
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -14.0 +1.9 +3.2 -8.6 -12.2 +1.9 -10.8 +3.7 +8.6 -0.4 +5.0
Relative (%) -44.9 +5.9 +10.2 -27.6 -39.0 +5.9 -34.8 +11.9 +27.5 -1.2 +16.1
Steps
(reduced)
38
(38)
61
(14)
77
(30)
89
(42)
99
(5)
108
(14)
115
(21)
122
(28)
128
(34)
133
(39)
138
(44)
Approximation of harmonics in 47ed7/3
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -8.7 -12.2 -6.8 +6.3 -5.0 -10.3 -10.3 -5.5 +3.7 -14.4 +2.3
Relative (%) -27.9 -39.0 -21.7 +20.3 -16.0 -33.0 -32.9 -17.5 +11.9 -46.2 +7.3
Steps
(reduced)
142
(1)
146
(5)
150
(9)
154
(13)
157
(16)
160
(19)
163
(22)
166
(25)
169
(28)
171
(30)
174
(33)